首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study aimed to investigate the synthetic potentiality and chemical reactivity of 2-thioxo-1,2-dihydropyridine-3-carbonitrile derivative 1. This goal performed via its reaction with each of 1-chloroacetone and iodomethane to afford the corresponding 2-alkylthio derivatives 3 and 9, respectively. Compound 3 underwent intramolecular cyclization to afford the corresponding thieno[2,3-b]pyridine derivative 4 which in turn, reacted with dimethylformamide/dimethylacetal followed by hydrazine hydrate and nitrous acid to afford the corresponding pyridothienopyrimidine and pyridothienopyridazine derivatives 6 and 8, respectively. On the other hand, Compound 9 reacted with hydrazine hydrate to give 3-aminopyrazolo[3,4-b]pyridine derivative 10, which diazotized with nitrous acid to give the corresponding diazonium salt 11. Compound 11 coupled with several active –CH2-containing reagents to synthesize the corresponding pyridopyrazolo-triazines 15, 24, 29, and 31. The formulas of all newly synthesized heterocyclic compounds were elucidated by considering the data of IR, 1H NMR, Mass spectral data, as well as data from elemental analyses.  相似文献   

2.
3-Oxo-N-{4-[(pyrimidin-2-ylamino)sulfonyl]phenyl}butanamide 1 reacts with arylidinecyanothioacetamide in refluxing ethanolic TEA to give the pyridinethione 2 rather than thiopyrane 4. Compound 2 reacts with α-haloketones to give the s-alkylated derivatives 7a–e. Compound 7a–e undergoes cyclization into thieno[2,3-b]pyridine derivatives 8a–e. The saponification of 8a gives the amino acid 9, which affords 10 when refluxed in Ac2O. The treatment of 10 with NH4OAc/AcOH gives 11. Compound II is also obtained when 8e is refluxed in Ac2O. The reaction of 8a with hydrazine hydrate gives 12 and with formamide gives 13. Compound 13 also is obtained from the reaction of 8e with triethylorthoformate. The acetylation of 8a with Ac2O gives the amide derivative 14, which, on treatment with aromatic amines, affords 15a–c. Compounds 15a–c are cyclized with H2SO4 to 16a–c. Compound 16 is obtained also from the acetylation of compound 8c, d by Ac2O. Reactions of compound 8e with CS2 in refluxing dioxane afford 17. The diazotization and self-coupling of 8e give the pyridothienotriazine 18. Finally, the chloronation of compound 13 with POCl3 affords the chloride derivative 19.  相似文献   

3.
Pyridine-2(1H)-thione 5 was synthesized from the reaction of 3-[3-(4-chlorophenyl)-1-phenyl-1H-pyrazol-4-yl]-1-phenylpropenone (3) and cynothioacetamide (4). Compound 5 reacted with halogented compounds 6a–e to give 2-S-alkylpyridine derivatives 7a–e, which could be in turn cyclized into the corresponding thieno[2,3-b]-pyridine derivatives 8a–e. Compound 8a reacted with hydrazine hydrate to give 9. The latter compound reacted with acetic anhydride (10a), formic acid (10b), acetic acid, ethyl acetoacetate, and pentane-2,4-dione to give the corresponding pyrido[3′,2′:4,5]thieno-[3,2-d]pyrimidine 13a,b, pyrazolo[3′,4′:4,5]thieno[3,2-d]pyridine 14 and thieno[2,3-b]-pyridine derivatives 18 and 20, respectively. Alternatively, 8c reacted with 10a,b and nitrous acid to afford the corresponding pyrido[3′,2′:4,5]thieno[3,2-d]pyrimidine 24a,b and pyrido[3′,2′:4,5]thieno[3,2-d][1,2,3]triazine 26 derivatives, respectively. Finally compound 5 reacted with methyl iodide to give 2-methylthiopyridine derivative 27, which could be reacted with hydrazine hydrate to yield the corresponding pyrazolo[3,4-b]-pyridine derivative 29.  相似文献   

4.
We prepared a thieno[2,3-d]pyrimidine compound fused with a thiazolo ring to produce biologicaly active compounds. In a one-step reaction, 2-arylmethylene derivative (3) was prepared via the reaction of a ternary mixture of 2-thioxo-1,2,3,4-tetrahydrocyclohepteno[4,5]thieno[2,3-d]pyrimi-dine-4-one (2), cloroacetic acid, and a proper aldehyde. The reaction of 2 with 3-chloropent-2,4-dione in ethanolic potassium hydroxide yielded the S-acetylacetone derivative 4e. The latter compound reacted with hydrazine hydrate and phenyl hydrazine to give 2-pyrazolthio derivatives 8a,b, respectively. Compound 4e also underwent cyclization on boiling with acetic anhydride/pyridine solution to form 2-acetyl-3-methyl thiazolo[3,2-a]cyclohepteno[4,5]thieno[2,3-d] pyrimidine-5-one (9). To support the structure 9, it gave a characteristic reaction for the 2-acetyl group. The 2-methylthio derivatives 4a underwent further alkylation at N3 to give 6a,b. The purpose of the synthesis of thienopyrimidine derivatives is due to high biological activities. The 4-oxo-thienopyrimidine derivatives acted as inhibitors of adenosine kinase, platelet aggregation, antilukemia, and anticancer activities.  相似文献   

5.
Abstract

Reaction of 8-amino-7-(2 furyl)-5,6-dihydrobenzo[h]thieno[2,3-b]quinoline-9-carbonitrile (3a) with phenyl isothiocyanate, triethyl orthoformate, ethylenediamine and/or sodium azide afforded benzo[h]thieno[2,3-b]quinolines 4,7,20 and 25 respectively. Cyclization of thiourea derivative 4 furnished thioxopyrimidine derivative 5. The dithioxopyrimidine 6 was prepared by reaction of 3a with carbon disulfide. On treatment of 7 with hydrazine hydrate, 10-amino-7-(2-furyl)-11-imino-5,6,10,11-tetrahydrobenzo[h]pyrimido[4′,5′:4,5]thieno [2,3-b]quinoline (8) was obtained. Compounds 8,20 and 25 were used as key intermediates in the synthesis of the fused hexacyclic compounds 9–19, 21–24 and 26–28 respectively. 8-Amino-7-(2-furyl)-5,6-dihydrobenzo[h]thieno[2,3-b]quinoline-9-carboxamide (3b) was reacted with some reagents, namely triethyl orthoformate, benzaldehyde, carbon disulfide, phenyl isothiocyanate, and/or acetic anhydride to give the corresponding benzo[h]pyrimido [4′,5′: 4,5]thieno[2,3-b]quinolines 29, 30, 31, 32 and 34. Compound 29 underwent some sequence reactions to give 37–42. Some of the prepared compounds were tested in vitro for their antibacterial and antifungal activities.  相似文献   

6.

Pyrdine-2(1H)-thione 1 reacted with ethyl chloroacetate 2 to give 2-S-ethoxy-carbonylmethylpyridine derivative 3, which could be cyclized into thieno[2,3-b]-pyridine-2-carbohydrazide derivative 5 by boiling with hydrazine hydrate. The latter compound reacted with cinnamonitrile derivatives 6a, b, triethylorthoformate, formic acid, dimethylformamide-dimethylacetal, and diethyl carbonate to give the corresponding shiff base 7a, b and pyrido[3′,2′;-4,5]thieno[3,2-d]pyrimidine derivatives 10–13 in respective manner. On the other hand, compound 5 also reacted with carbondisulphide and phenyl isothiocyanate to afford the corresponding 2-(1,3,4-oxadiazolo-2-yl)thieno[2,3-b]pyridine derivatives 18 and 22. Finally, compound 5 reacted with some β-dicarbonyl compounds, such as ethyl acetoacetate, acetylacetone and ethyl β-arylazoacetoacetate, to yield the corresponding 2-(pyrazol-1-yl-carbonyl)thieno[2,3-b]pyridine derivatives 24, 25, and 27 respectively.  相似文献   

7.
4-Cyano-5,6-diphenyl-2,3-dihydropyridazine-3-onc 1 reacts with phosphorous oxychloride to give 70% of the corresponding 3-chloro derivative 2. Treating 2 with anthranilic acid in butanol, 4-cyano-2,3-diphenyl-10H-pyridazino[6,1-b]quinoxaline-10-one, 3 was obtained. Compound 1 reacts with phosphorous pentasulphide to give 3-mercapto derivative 4, which was converted by acrylonitrile to S-(2-cyanoethyl)pyridazine derivative 5. Compound 4 reacts with ethyl bromoacetate and with phenacyl bromide gave the corresponding thieno[2,3-c] pyridazine derivatives 8, 9, Alkylation of 1 with ethyl chloroacetate afforded 3-0-carbethoxymethyl derivative 10. Compound 10 reacts with amines (aniline, hydrazine) to give the corresponding amide and acid hydrazide 13, 12 respectively. Hydrolysis of 10 with sodium hydroxide gave the corresponding acid derivative 11. Treating 1 with methyl iodide, 3-0-methyl derivative 14 was obtained, which was converted by ammonium acetate/acetic acid to 3-amino-4-cyano-5,6-diphenyl pyridazine 15. Compound 1 reacts with methyl magnesium iodide gave 4-acetyl derivative 16, which was reacted with hydrazine, phenyl hydrazine and with hydroxylamine to give the substituted I H pyrazolo [3,4-c] pyridazine 17 a,b and isoxazolo [5,4-c] pyridazine 18 derivatives respectively.  相似文献   

8.
Abstract

Benzothiophene -2- carbaldehyde 1 reacted with 2-cyanoethanethioamide 2 in 1:2 molar ratios to give the corresponding 6-amino-4-(benzo[b]thiophen-2-yl)-2-thioxo-1, 2-dihydropyridine-3,5-dicarbonitrile 6. The synthetic potentiality of compound 6 was investigated via its reaction with active halogen-containing reagents to afford the corresponding thieno[2,3-b]pyridine derivatives 11a,b, 14, 16, and 19. Also, compound 6 reacted with hydrazine hydrate to give the pyrazolo[3,4-b]pyridine derivative 21. Compound 21 condensed with 4-(2-thienyl)benzaldehyde to afford pyrazolo[3,4-b]pyridine derivative 23. Structural elucidation of all the newly synthesized heterocyclic compounds was based on elemental analyses, IR, 1H NMR, and mass spectra.

Supplemental materials are available for this article. Go to the publisher's online edition of Phosphorus, Sulfur, and Silicon and the Related Elements to view the free supplemental file.  相似文献   

9.
Condensation of thiazolidin-5-one derivative 1 with different aromatic aldehydes gave the corresponding arylidenes 2a–e. Compound 2e was reacted with urea and thiourea to give the corresponding thiazolo[5,4-d]pyrimidine derivatives 3a, b, respectively. Treatment of compound 1 with phenyl isothiocyanate in basic DMF gave the nonisolable potassium salt of the adduct 4, which underwent heterocyclization upon treatment with chloroacetyl chloride and phenacyl bromide to give the corresponding [2,4′] bisthiazolidinylidenes 5 and 8. Moreover, the reactions of compound 1 with a variety of reagents, e.g., ninhydrin and isatin, were investigated. The structures of these compounds were established by analytical and spectral data.  相似文献   

10.

1,3-Dihydro-4-phenyl-1,5-benzodiazepin-2-one 1 a was treated with some ylidenecyanothioacetamides to give the corresponding pyrido(2,3-b)benzodiazepines 36. Treatment of compound 1 a with a mixture of thiophen-2-aldehyde and thiourea or guanidine gave the corresponding 1,3-thiazino- and pyrimido(4,5-b)benzodiazepines 7 and 8. 3-Arylidene derivatives 9 a–e and 10 were synthesized. Compound 10 was subject to react with 2-(1-methylthio-1′-anilinomethylidene)malononitrile to give oxazino-benzodiazepine 11. Thieno(3,2-b)benzodiazepines 12 a,b and 13 were synthesized via the reaction of compound 1 b with sulfur and some active nitriles. [1,3-Dihydro-4-phenyl(1,5)-benzodiazepin-2-ylidene]malononitrile 15was used as synthon to obtain novel pyrido-, pyrano-, benzo-, and thienobenzodiazepines 16–20, respectively. The reaction of compound 1 b with CS 2 or PhNCS along with 1,1,3-tricyano-2-aminoprop-1-ene, 2-(1-methylthio-1′-anilinomethylidene)malononitrile, or 1,3-dibromopropane gave the corresponding polyfused benzodiazepines 2123, respectively.  相似文献   

11.
2-acetyl-3-amino-4,6-dimethylthieno[2,3-b]pyridine 1 reacted with dimethoxy-tetrahydrofuran in acetic acid and ethyl cyanoacetate in the presence of ammonium acetate or with NaNO2 in the presence of an AcOH/HCl mixture to produce 2–4. Compound 2 reacted with aromatic aldehydes, semicarbazide hydrochloride, thiosemicarbazide, and phenyl hydrazine or with hydrazine hydrate to give compounds 5a–c and 11a–d, respectively.

Chalcone 5 reacted with hydrazines, hydroxylamine hydrochloride, or thiourea to produce compounds 6–9. Thiosemicarbazone 11b reacted with α -haloester to produce the corresponding thiazolidinone derivatives 12a, b ; also it reacted with ω -bromoacetophenone to give thiazoline derivatives 13a, b .  相似文献   

12.
5-Ethoxymethylene-2-thioxo-4-thiazolidinone (1) reacts with hydrazine hydrate at room temperature to afford 5-(hydrazinylmethylene)-2-thioxo-4-thiazolidinone (3). Compound 3 condensed with different aromatic aldehydes 6a–d in ethanol in the presence of a few drops of piperidine to give the corresponding Schiff’s bases 7a–d. On the other hand, compound 3 reacts with o-hydroxybenzaldehyde derivatives 8a and 8b in refluxing ethanol catalyzed by a few drops of piperidine to yield 1H-inadzolyl-2-thioxo-4-thiazolidinones 9a and 9b. Reaction of compound 3 with α-ketoesters 10a and 10b or α-diketones 10c–e in refluxing glacial acetic acid furnished the pyrazolyl-2-thioxo-4-thiazolidinone derivatives 11a–e. Also, compound 3 reacts with some different enaminones 12a–f in refluxing glacial acetic acid to afford the new pyrazolyl-2-thioxo-4-thiazolidinone derivatives 13a–f. Pyrazoles 15a–d was obtained via reaction of compound 3 with chalcones 14a–d in dimethylformamide (DMF). The structures of all the newly synthesized products were confirmed on the basis of their elemental and spectral data, and a plausible mechanism has been postulated to account for their formation.  相似文献   

13.
The reaction of thiocarbohydrazide with carboxylic acids at the melting temperature allows an improved preparation of 5-substituted-4-amino-3-mercapto 1,2,4-triazoles 1 a ? g . Compound 1 a reacted with 2-bromopropionic acid to give acid derivative 2 . The latter was reacted with a mixture of acetic anhydride and triethylamine to afford the mesoionic compound 3 . Heating of compound 3 in ethanol gave the ester derivative 4 , which on alkaline hydrolysis in methanol gave ketone derivative 5 . Substituted 1,2,4-triazolo [3,4-b]-6H-1,3,4-thiadiazine 6 h,i and 7 were synthesized by reaction of 1 a with acetylacetone, ethyl acetoacetate and chloroacetamide. Heterocyclic systems 8 and 9 were prepared through the reaction of 1 a with 2,3-dichloro-1,4-naphthoquinone and 2,3-dichloroquinoxaline. In addition, thenoyl isothiocyanate, thenoyl chloride, 2-thiophenecarbaldehyde, and p-chlorophenyl isocyanate reacted with compound 1 a to afford 1,2,4-triazolo[3,4-b]-1,3,4-thiadiazole ring system 10 , 11 , and urea derivative 12 . 1,2,4-Triazolo[3,4-b]-5H-pyrazole derivatives 14 j,k were prepared through the reaction of compound 1 a with 3-chloro-2,4-pentandione and ethyl-2-chloroacetoacetate. Compound 14 j was treated with hydrazine to afford products 15 , 16 , and 17 depending on the type of hydrazine derivative and reaction conditions. Compound 19 was synthesized by refluxing of compound 14 j with hydroxylamine hydrochloride to afford the corresponding oxime derivative 18 followed by treatment with thenoyl chloride.  相似文献   

14.
Pyridine-2(1H)-thione derivatives 3a,b were synthesized from the reaction of 1-(phenyl-sulfanyl)acetone (1) and cinnnamonitrile derivatives 2a,b. Compounds 3a,b reacted with different halogenated reagents 7a–f to give 2-S-alkylpyridine derivatives 8a–l, which could be, in turn, cyclized into the corresponding thieno[2,3-b]pyridine derivatives 9a–l. Compounds 9d,j reacted with acetic anhydride, formic acid, carbon disulfide, phenyl isothiocyanate, and nitrous acid to yield the corresponding pyrido[3′,2′:4,5]thieno[2,3-d]pyrimidine 12a,b, 15a,b, 17a,b, 20a,b, and pyrido[3′,2′:4,5]thieno[2,3-d][1,2,3]triazinone derivatives 22a,b, respectively.

Supplemental materials are available for this article. Go to the publisher's online edition of Phosphorus, Sulfur, and Silicon and the Related Elements to view the free supplemental file.  相似文献   

15.
Treating 5‐(4‐phenylcarboxamido)‐3‐cyano‐4‐methylpyridin‐2(1H)thione ( 3 ) with elemental sulfur yielded thienopyridine 4 . Compound 4 reacts with acrylonitrile to give isoquinoline 7 . Compound 7 was also, prepared from 3 and methylenemalononitrile. Reaction of 3 with dimethylacetylene dicarboxylate (DMAD) gave the pyridothiazole 9 . Also, 3 reacted with N,N‐dimethylchloroacetamide ( 10 ) to afford compound 11 which further reacted with the reagents 12 , 13 and 14 providing the thieno[2,3‐b]pyridine derivatives 15 , 16 and 17 respectively.  相似文献   

16.
A series of novel triazolothione, thiadiazole, triazole-functionalized furo/thieno[2,3-b]pyridine derivatives 9a–l, respectively, were prepared starting from 2 (1H) pyridone 3 through selective O/S-alkylation followed by Thorpe–Ziegler cyclization to form furo/thieno[2,3-b]pyridine derivatives 6. Compounds 6 on reaction with hydrazine hydrate resulted carbohydrazide derivatives 7 and further reacted with diverse substituted phenyl isothiocyanates to form phenyl hydrazine carbothiamide derivatives 8. Each compound 8 is independently reacted in presence of NaOH, H2SO4, and N2H4.H2O to form triazolothione, thiadiazole, triazole-functionalized furo/thieno[2,3-b]pyridine derivatives 9a–l, respectively. All the products 9a–l were screened against Gram +ve, Gram –ve bacteria and fungal strains. Compounds 9c–h showed high activity against Bacillus subtilis microbial-type culture collection (MTCC) 121 at <8.0 micromolar concentration. Promising compounds further screened for minimum bactericidal concentration against B. subtilis MTCC 121 using ciprofloxacin as standard and found to show very good activity. These compounds also screened for biofilm inhibition activity against B. subtilis MTCC 121 using erythromycin as standard and confirmed the high activity.  相似文献   

17.
In one-pot synthesis 2-arylidene-5,6,7,8-tetrahydrothiazolo[3,2-a] cyclopenteno-thieno[2,3-d] pyrimidine-3,5-diones (3) were prepared via the reaction of a ternary mixture of 2-thioxo-1,3,4,5,6,7-hexahydr cyclopentinothieno [2,3-d]-4-one (2), chloroacetic acid and a proper aldehyde. Compound 2 reacted with 3-chloropent-2, 4-dione in ethanolic potassium hydroxide yielding the S-acetyl acetone derivative 5f . The latter compound reacted with hydrazine hydrate and phenyl hydrazine yielded the 2-pyrazolthio derivative 10a, b. Compound 5f also underwent cyclization on heating with acetic acid—pyridine solution to give 11. The 2-methylthio derivative 5a, when treated with hydrogen peroxide gave the corresponding oxidized product 9.  相似文献   

18.
A series of pyridofuro compounds were synthesized from 4-(4-chlorophenyl)-1,2-dihydro-2-oxo-6-(thiophen-2-yl)pyridine-3-carbonitrile (1) as starting material. Alkylation of 1 with ethyl bromoacetate gave the corresponding ester 2, which was condensed with hydrazine hydrate to afford the corresponding acid hydrazide derivative 3. Thrope-Ziegler cyclization of 2 with sodium methoxide gave furo[2,3-b]pyridine derivative 4, which was reacted with thiosemicarbazide, allyl isothiocyanate, formamide or hydrazine hydrate to give furopyridine derivatives 5–8, respectively. The latter compound 8 was cyclized with acetylacetone or formic acid to give the corresponding compounds 9 and 10, respectively. Furthermore, sulfurization of 1 with P2S5 gave the corresponding thioxopyridine 11, which was reacted with glycosyl (or galactosyl) bromide, morpholine or piperidine to give the corresponding thioglycoside 12a,b and Mannich base 14a,b derivatives. The deacetylation of 12a,b gave the corresponding deacetylated thioglycosides 13a,b, respectively. All the newly synthesized compounds were characterized by the elemental analyses and spectroscopic evidences (IR, 1H- and 13C NMR).  相似文献   

19.
Abstract

Alkylation of 4-anilino-5-phenyl-4H-1,2,4-triazole-3-thiol (1) with some halo compounds yielded the corresponding sulfides 2af. Some sulfides 2e,f were cyclized to give triazolothiadiazines 3 and 4. Triazolothiadiazoles 5 and 6 were prepared through the reaction of compound 1 with carbon disulfide or ethyl orthoformate, respectively. Treatment of compound 1 with ethyl chloroformate or phenyl isothiocyanate yielded triazolo-thiadiazole and triazole 9 and 10, respectively. Reaction of compound 1 with Lawesson's reagent gave triazolothiadiazaphosphole derivative 11. Also, compound 1 underwent cyclocondensation reactions with some bidentate reagents to give triazolothiazines 4, 12, and 13. Triazolo-thiazepines and triaziepine 1416 were synthesized via the reaction of compound 1 with β-ketoesters or ethyl cyanoacetate. Tricyclic systems 19 and 20 were prepared through the reaction of compound 4 with the appropriate reagent. Some synthesized compounds were tested for antibacterial activity.

Supplemental materials are available for this article. Go to the publisher's online edition of Phosphorus, Sulfur, and Silicon and the Related Elements to view the free supplemental file.  相似文献   

20.
3,4-Diamino-2-carbethoxy-5-cyanothieno(2,3-b)thiophene (1) was treated with ethylenediamine to afford 3,4-diamino-2,5-bi[2-(4,5-dihydro-1H-imidazole-2-yl]-thieno(2,3-b)thiophene 2 , which in turn was treated with chloroacety chloride to give bis[imidazolothieno diazepine] derivative 3 and with each of p-chlorobenzaldehyde, triethyl orthoformate, and Lawesson's reagent (LR) to yield bis[imidazolothienopyrimidine] derivatives 4-6 . Compound 1 was subjected to Mannich reaction to afford Mannich bases 7 and 8a , b . The later products ( 8a , b ) were treated with malononitrile yielding 9a and 9b . Treatment of compound 1 with CS 2 , NaOH and CH 3 I produced compounds 10 and 11 . The reaction of compound 10 with each of o-aminothiphenal, o-phenylenediamen, hydrazine hydrate, and phenylhydrazine afforded compounds 12a , b , 13a , b . Compound 1 was allowed to react with CS 2 , phenyl (benzoyl)isothiocyanate and phenylisocyanate to get the described products 14-19 , respectively. On reacting compound 1 with ethylcyanoacetate thieno(2,3-b)pyridine derivative 21 was obtained through the intermediate 20 . Finally, compound 1 was treated with malononitrile to yield compound 22 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号