首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Channeling radiation from 39 and 45 MeV electrons channeled along the <0001> axis, the (0110) plane and the (1210) plane of a 30 μm thick LiNbO 3 crystal has been measured. Calculations of the planar crystal potentials were performed by means of the many-beam formalism. Good agreement between theory and experiment is obtained for the planar channeling radiation. Associated with channeling additional radiation lines have been observed, which may be explained by a periodic perturbation of the continuum potential.  相似文献   

2.
We propose to use channeling radiation (CR) from relativistic electrons as a source of high energy twisted photons in the MeV range. We calculate numerically the orbital angular momentum (OAM) of radiation produced by electrons with the energies 155÷2500 MeV for the axial and planar channeling in the thin Si crystal. We obtain that the average OAM of CR in this case is approximately 1÷6? per photon with the photon energies about 1÷2 MeV.  相似文献   

3.
Abstract

When a relativistic charged particle passes through a single crystal very nearly along a major crystalline plane or axis so that it is channeled in that direction, it undergoes periodic motion in the plane transverse to this direction and hence it can radiate. Quantum mechanically, this channeling radiation corresponds to a radiative transition between two eigenstates of the transverse crystalline potential; when the transition occurs between two bound states, a sharp spectral line is emitted. When there are only two bound states (for incident electrons), or when the interplaner potential is nearly harmonic (as for incident positrons), the emitted radiation is nearly monochromatic. Since the discovery of channeling radiation at the LLNL Electron-Positron Linear Accelerator, many of its properties have been delineated, both there and elsewhere. For example, channeling radiation is very intense, forward-directed, easily tunable, and for the planar case, linearly polarized. Channeling radiation has been used as a probe both of the interplanar potentials and other properties of perfect crystals and of the effects of impurities and defects in imperfect crystals. Finally, channeling radiation has great potential use as a photon source for numerous other applications in several fields of science and technology.

This paper is intended to keynote the first International Conference on Coherent Radiation Processes in Strong Fields by recalling some history of the discovery and exploitation to date of channeling radiation. Studies of channeling radiation, in addition to elucidating the physics of the process itself, its application to the determination of properties of perfect and imperfect crystals, and its potential application to a large variety of fields by its use as an intense, monochromatic, forward-directed, tunable, and polarized photon source, have spawned an entire industry of studies of other coherent radiation processes, all consisting of photon production from beams of relativistic charged particles traversing periodic structures, which constitute the principal subject matter of this Conference. This paper will be limited to the discussion of channeling radiation and some of its applications. It will be in the nature of an illustrative exposition, showing many of the features of channeling radiation and its applications in a qualitative way. Several detailed studies of channeling radiation will be presented later in the Conference.  相似文献   

4.
Abstract

The spectral intensity of the radiation emitted by an axially channeled electron in a single crystal excited by a longitudinal hypersonic wave propagating along the channeling direction has been calculated for the energy range 10MeV ≤ E ≤ 100 MeV. It has been shown that under the influence of acoustic vibrations excited in the single crystal a resonant intensification of the electron channeling radiation, a variation of its spectral distribution as well as inverse radiative transitions are possible.  相似文献   

5.
Abstract

Many authors have studied channeling radiation theoretically by means of the so called many beam approach. For axial channeling this approach tends to involve rather large eigenvalue problems if high accuracy is desired. With the extension to three-dimensional problems in mind we have therefore investigated the possibilities for a more efficient solution of these eigenvalue problems. The Lanczos algorithm [2] used in the preparation of Fig. 1 provides a substantial reduction of the numerical effort. We have also obtained some preliminary results for three-dimensional corrections to the tranverse problem. These corrections were found to be three-dimensional rather than longitudinal in character and tend to reduce the photon energy. The corrections are smaller than 1 percent for 4 MeV electrons in silicon. A more thorough investigation of these effects for the low energy part of the spectrum and a study of their impact on the high energy radiation [3] is now in progress. The conventional transverse many beam approach based on the Lindhard continuum approximation does not describe the latter effect.  相似文献   

6.
Abstract

A supercollimated beam of 4 MeV H? ions with an angular spread of 1.5 × 10?3 degrees, a diameter of 25 μ and a current of 10 picoamps was used to study the axial and planar channeling characteristics of single crystal silicon samples ranging in thickness from 0.5 to 1.0 μ. Since the angular spread of the beam is much smaller than most of the gross angular phenomena associated with channeling, it is possible to study the detailed characteristics of both planar and axial channeling with greater precision than before. Preliminary results indicate that this technique will allow a direct study of interatomic or continuum potential distributions and will also be useful for studying nuclear multiple scattering as a function of the tranverse energy of channeled particles relative to atomic rows and planar directions.  相似文献   

7.
The spectral dependence of the γ-radiation produced by channeled electrons of different energies, E = 600, 750 and 900 MeV in 0.35 mm thick diamond was measured with a NaI(Tl) photon spectrometer. The energy dependences of the basic spectral features of the channeling radiation were determined.  相似文献   

8.
We report the observation of the steering of 855 MeV electrons by bent silicon and germanium crystals at the MAinzer MIkrotron. Crystals with 15 \(\upmu \)m of length, bent along (111) planes, were exploited to investigate orientational coherent effects. By using a piezo-actuated mechanical holder, which allowed to remotely change the crystal curvature, it was possible to study the steering capability of planar channeling and volume reflection vs. the curvature radius and the atomic number, Z. For silicon, the channeling efficiency exceeds 35%, a record for negatively charged particles. This was possible due to the realization of a crystal with a thickness of the order of the dechanneling length. On the other hand, for germanium the efficiency is slightly below 10% due to the stronger contribution of multiple scattering for a higher-Z material. Nevertheless this is the first evidence of negative beam steering by planar channeling in a Ge crystal. Having determined for the first time the dechanneling length, one may design a Ge crystal based on such knowledge providing nearly the same channeling efficiency of silicon. The presented results are relevant for crystal-based beam manipulation as well as for the generation of e.m. radiation in bent and periodically bent crystals.  相似文献   

9.
The computer model for the resonant coherent excitation of heavy relativistic ions under planar channeling in crystals taking into account the fine structure of the energy levels of the orbital electron and the ion ionization from both the ground and first excited state is presented. The model has been used to explain the experiments carried out under planar channeling of 390 MeV/n 17+Ar ions. Reasonably good agreement for the calculated and experimental data has been obtained.  相似文献   

10.
Abstract

A model for calculation of the range distribution of energetic ions with taking into account the channeling effect is proposed. The measurement of the depth distributions of boron ions in silicon crystals implanted at 13.6 and 91 MeV revealed significant difference between the measured and the calculated range profiles when the channeling effects have not been included in the calculation. In spite of deminishing the critical angles of channeling with growing ion energy the probability of the capture of ions into the channeling regime is significant in case of high energy implantation even when the incident angles are 7–10° off the main crystallographic directions.  相似文献   

11.
Both positron and electron channeling radiation peak energies corresponding to the planar channels in diamond and silicon are calculated and compared with experimental ones at particle energies of 28-56 MeV. The potential model used is an approximate form of the Hartree-Fock potential, proposed in our previous works. The obtained results are in good agreement with experiment.  相似文献   

12.
We develop a theory of quantum states caused by defects of the crystal lattice during planar channeling of electrons. Points defects are considered. We obtain expressions for the wave function and the transverse energy of the defect states and make estimates for {110} planar channeling in silicon by electrons with energies of 1–10 MeV. Substitutional, interstitial, and vacancy impurity atoms are examined. We propose using properties of the electromagnetic radiation of electrons in defect states for diagnostics of single crystals.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 4, pp.68–72, April, 1990.  相似文献   

13.
14.
A new type of combinational channeling radiation induced by subbarrier (interband) transitions for the transverse motion of relativistic electrons (positrons) is studied. It is known as diffracted channeling radiation (DCR). The formula describing the DCR angular distribution in the case of axial channeling is obtained by taking into account the band structure of energy levels for the transverse motion of electrons (positrons). It is shown that, in the two-wave approximation of the wave function A(r) of virtual photons, the DCR matrix elements in the dipole approximation for axial and plane channeling coincide formally (with the dimension of the problem taken into account). However, the formulas for DCR angular distributions in the cases of axial and plane channeling differ considerably.  相似文献   

15.
ABSTRACT

In this paper, the radiation shielding parameters such as linear attenuation coefficients (LAC, µ), mass attenuation coefficients (MAC, µ/ρ), effective atomic numbers (Zeff), effective electron densities (Neff), half value of layers (HVL), mean free paths (MFP) and buildup factors (exposure (EBF) and energy absorption (EABF)) were investigated for cream (M1), pink (M2), white (M3), maroon (M4) and green (M5) marbles. Attenuation coefficients were measured in the energy region 31.18–661.66 keV photon energies. The values of Zeff and Neff were then calculated using these coefficients with logarithmic interpolation method, and HVLs and MFPs were calculated using the values of LAC of marble samples at the same photon energies. The experimental results were compared with the theoretical values obtained from WinXCom program, and good agreements were observed between the experimental and theoretical results. HVLs and MFPs of all marble samples were compared with those of some concretes, glasses and commercial radiation shielding glasses (SCHOTT Co.). The studied marbles were better radiation shielding materials than standard shielding concretes due to lower HVL and MFP values lower than the ordinary concrete. Finally, EBFs and EABFs of the marbles were calculated in the energy region 0.015–1?MeV up to penetration depths of 40 mfps by Geometric Progression method (G-P), and the results were discussed in terms of photon energies and chemical compositions of the marbles.  相似文献   

16.
Abstract

The lattice disorder produced by 42-keV and 75-keV Hg ions implanted in Silicon at room temperature and the lattice location of the Hg atoms were studied by means of the channeling technique with a 2.0 MeV 4He+ beam. The damage produced was found to increase linearly with ion dose until a saturation value, connected to the ion range, is reached. The number of Si atoms displaced for Hg ion implanted was evaluated and compared with the theoretical expectation. The substitutional Hg fraction is connected to the disorder produced: the replacement mechanism is discussed.  相似文献   

17.
A. Hofmann 《Physics Reports》1980,64(5):253-281
The properties of synchrotron radiation from LEP are investigated. This radiation from LEP are investigated. This radiation is assumed to be in a parasitic mode without changing any of the operating parameters. At 86 GeV the radiation from the normal bending magnet has a critical energy of 0.4 MeV and a power of ~500 W/m, and is probably of limited interest. High photon energies (10–20 MeV) of high intensity can be obtained from normal and superconducting wiggler magnets. Undulators can give quasi-monochromatic radiation of high brightness with photon energies of up to 5 MeV. New magnet developments might increase this energy range. Quasi-monochromatic γ-rays of ~100 MeV can be created with soft Compton back scattering without disturbing the electron bean. This relies on future free electron lasers in the submillimetre range. The natural collimation, the polarization and the time structure make all these photon beams unique tools for research in nuclear physics. The synchrotron rediation can be used to produced photoneutrons with intensities of up to 1014 neutrons/s. It is foreseen that LEP will be equipped with superconducting cavities in later stage and that is energy will be increased to ~130 GeV. This will approximately double the photon energies obtained from wigglers and undulators.  相似文献   

18.
在经典力学框架内,描述了带电粒子自发辐射谱分布与最大辐射频率;引入反比相关的双曲余弦平方势,讨论了超相对论电子的面沟道辐射,导出了电子能量E=5.0GeV时,一次谐波的最大辐射能量ε=57MeV,与其他工作比较基本一致.沟道辐射与自由电子激光十分类似,它的方向性极好,大都集中在粒子运动方向、角宽Δθ≈γ-1/2范围内;且能量高、连续可调,偏振度也很好.指出了利用超晶格沟道辐射与超晶格的多层薄膜结构相互作用,可望把自发的沟道辐射改造为相干辐射,从而得到X激光或γ激光.  相似文献   

19.
Abstract

An introduction to channeling and channeling (Kumakhov) radiation is given. Relativistic and quantum-mechanical effects are discussed in function of the electron or positron energy. Phenomena of Quantum Electrodynamics in strong macroscopic field, which can be tested in channeling conditions, are described. Recipees for semi-classical Monte-Carlo simulations are presented and one of them compared with experiments at 10 and 150 GeV.  相似文献   

20.
金卫国  赵国庆 《物理学报》1988,37(7):1131-1136
采用高分辨探测系统,在不同的入射角θin和出射角θout的条件下,测量了1—2MeV4He+入射在Al(100)面和Si(110),(100)面中的背散射能谱。得到了背散射能谱振荡峰的间距ΔE与cosθin/cosθout的直线关系,从而获得了1—2MeV4He+在这三个晶面中的振荡半波长及阻止本领。实验得到的半波长与理论计算值在误差范围内一致,晶面沟道方向的阻止本领略大于随机方向的阻止本领。 关键词:  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号