首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The complexes [Ag12(Spz)12(N‐triphos)2][Ag3(Spz)3(N‐triphos)]2 · (DMF)6 ( 1 ) and [Ag18(Spz)12(N‐triphos)4(CF3CO2)6] ( 2 ) were synthesized and structurally characterized by X‐ray diffraction [HSpz = pyrazine‐2‐thiolate, N‐triphos = tris((diphenylphosphanyl)methyl)amine]. The central [Ag6] ring with chair‐conformation in 1 and the ideally octahedral [Ag6] cluster core in 2 are both stabilized by the tripodal building units of neutral [Ag3(Spz)3(N‐triphos)] compound. The Ag ··· Ag distances of the [Ag6] moieties in 1 and 2 are 3.07 and 2.81 Å, respectively, exhibiting intermetallic interactions, which can enhance the stability of [Ag6] conformations. In addition, the π ··· π interactions between parallel pyrazine rings could impose on the building and the Ag ··· Ag interactions of these Ag–S clusters.  相似文献   

2.
Reactivity of Tris(dialkylthiophosphinyl)phosphines – Crystal Structure of [Ag{O[P(S)Me2]2}2][AsF6] In contrast to tris(dialkylphosphoryl)phosphines the reaction of tris(dimethylthiophosphinyl)phosphine with transition metal hexafluoroarsenates of the type [M(SO2)m [AsF6]n (M = Ag, m = 0, n = 1; M = Fe, Cd, m = n = 2) forms no molecular 2 : 1-complexes but polymeric products. The silver polymer is transformed into [Ag{O[P(S)Me2]2}2][AsF6], which is also formed by the reaction of Ag[AsF6] with O[P(S)Me2]2. It crystallizes in the space group P1 with a = 862.5(2), b = 1 241.4(2), c = 1 254.0(3)pm, α = 80.34(1), β = 101.99(6), γ= 73.75(1)° (at 20°C) and Z = 2. The central silver atom is surrounded by four sulphur atoms in a slighly distorted tetrahedron. The average (Ag? S) and (P? S) bond lengthes are 259.4(2) pm and 194.9(2)pm, respectively.  相似文献   

3.
Chloro- and Polyselenoselenates(II): Synthesis, Structure, and Properties of [Ph3(C2H4OH)P]2[SeCl4] · MeCN, [Ph4P]2[Se2Cl6], and [Ph4P]2[Se(Se5)2] By symproportionation of elemental selenium and SeCl4 in polar protic solvents the novel chloroselenates(+II), [SeCl4]2? and [Se2Cl6]2?, could be stabilized; they were crystallized with voluminous organic cations. They were characterized from complete X-ray structure analysis. Yellow-orange [Ph3(C2H4OH)P]2[SeCl4] · MeCN (space group P1 , a = 10.535(4), b = 12.204(5), c = 16.845(6) Å, α = 77.09(3)°, β = 76.40(3)°, γ = 82.75(3)° at 140 K) contains in its crystal structure monomeric [SeCl4]2? anions with square-planar coordination of Se(+II). The mean Se? Cl bond length is 2.441 Å. In yellow [Ph4P]2[Se2Cl6] (space group P1 , a = 10.269(3), b = 10.836(4), c = 10.872(3) Å, α = 80.26(3)°, β = 79.84(2)°, γ = 72.21(3)° at 140 K) a dinuclear centrosymmetric [Se2Cl6]2? anion, also with square-planar coordinated Se(+II), is observed. The average terminal and bridging Se? Cl bond distances are 2.273 and 2.680 Å, respectively. From redox reactions of elemental Se with boranate/thiolate in ethanol/DMF the bis(pentaselenido)selenate(+II) anion [Se(Se5)2]2? was prepared as a novel type of a mixed-valent chalcogenide. In dark-red-brown [Ph4P]2[Se(Se5)2] (space group P21/n, a = 12.748(4), b = 14.659(5), c = 14.036(5) Å, β = 108.53(3)° at 140 K) centrosymmetric molecular [Se(Se5)2]2? anions with square-planar coordination of the central Se(+II) by two bidentate pentaselenide ligands is observed (mean Se? Se bond lengths: 2.658 Å at Se(+II), 2.322 Å in [Se5]2?). The resulting six-membered chelate rings with chair conformation are spirocyclically linked through the central Se(+II). The vibrational spectra of the new anions are reported.  相似文献   

4.
Solvothermal reaction of [MnCl2(amine)] (amine = terpy and tren) with elemental As and Se at a 1:1:2 molar ratio in H2O/tren (10:1) affords the dimanganese(II) complexes [{Mn(terpy)}2(μ‐As2Se4)] ( 1 ) and [{Mn(tren)}2(μ‐As2Se5)] ( 2 ) respectively. The tetradentate [As2Se4]4? bridging ligands in 1 contain a central As–As bond and exhibit approximately C2h symmetry. Pairs of gauche sited Se atoms participate in five‐membered As2Se2Mn chelate rings. In contrast, two AsSe3 pyramids share a common corner in the [As2Se5]4? ligands of 2 and each coordinates an [Mn(tren)]2+ fragment through a single terminal Se atom. Such dinuclear complexes are linked into tetranuclear moieties through weak Se···Mn interactions of length 3.026(3) Å involving one of these terminal Se atoms. At a 1:3:6 molar ratio, solvothermal reaction of [MnCl2(tren)] with As and Se leads to formation of a second dinuclear complex [{Mn(tren)}2(μ‐As2Se6)2] ( 3 ), which contains two bridging bidentate [As2Se6]2? ligands. These are cyclic with an As2Se4 ring and can be regarded as being derived from [As2Se5]4? anions by formation of two Se‐Se bonds to an additional Se atom.  相似文献   

5.
The Syntheses and Vibrational Spectra of the Homoleptic Metal Acetonitrile Cations [Au(NCCH3)2]+, [Pd(NCCH3)4]2+, [Pt(NCCH3)4]2+, and the Adduct CH3CN · SbF5. The Crystal and Molecular Structures of [M(NCCH3)4][SbF6]2 · CH3CN, M = Pd or Pt Solvolyses of the homoleptic metal carbonyl salts [M(CO)4][Sb2F11]2, M = Pd or Pt, in acetonitrile leads at 50 °C both to complete ligand exchange for the cations as well as to a conversion of the di-octahedral anion [Sb2F11] into [SbF6] and the molecular adduct CH3CN · SbF5 according to: [M(CO)4][Sb2F11]2 + 7 CH3CN → [M(NCCH3)4][SbF6]2 · CH3CN + 2 CH3CN · SbF5 + 4 CO M = Pd, Pt The monosolvated [M(NCCH3)4][SbF6]2 · CH3CN are obtained as single crystals from solution and are structurally characterized by single crystal x-ray diffraction. Both salts are isostructural. The cations are square planar but the N–C–C-sceletial groups of the ligands depart slightly from linearity. The new acetonitrile complexes as well as [Au(NCCH3)2][SbF6] and the adduct CH3CN · SbF5 are completely characterized by vibrational spectroscopy.  相似文献   

6.
Salts of the weakly coordinating anions [Ga(OTeF5)4] as well as [Ga(Et)(OTeF5)3] and the neutral Ga2(Et)3(OTeF5)3 were synthesized and characterized by spectroscopic methods and single-crystal X-ray diffraction. Ga2(Et)3(OTeF5)3 was formed by treating GaEt3 with pentafluoroorthotelluric acid (HOTeF5) and reacted with PPh4Cl and CPh3Cl to [PPh4][Ga(Et)(OTeF5)3] and [CPh3][Ga(Et)(OTeF5)3]. In contrast, Ag[Ga(OTeF5)4] was prepared from AgOTeF5 and GaCl3 and was used as a versatile starting material for further reactions. Starting with Ag[Ga(OTeF5)4] the substrates [PPh4][Ga(OTeF5)4] and [CPh3][Ga(OTeF5)4] were formed from PPh4Cl and CPh3Cl.  相似文献   

7.
New selenidoantimonats [Ni(dien)2]2Sb2Se6 ( 1 ), [Mn(dien)2]2(SbSe4)(Cl) ( 2 ), [Co(dien)2]2(SbSe4)(Br) ( 3 ), and [Co(dien)2]3(SbSe4)2 ( 4 ) (dien = diethylenetriamine) were solvothermally synthesized in dien solvent at 180 °C. The crystal structure of 1 consists of two octahedral [Ni(dien)2]2+ cations and a mixed‐valent [Sb2Se6]4? anion. The isolated [Sb2Se6]4? anion is formed by a SbIIISe3 trigonal pyramid and a SbVSe4 tetrahedron sharing a common corner. 2 and 3 are composed of octahedral [M(dien)2]2+ cations, tetrahedral [SbSe4]3? anions and halide ions forming an extended network through hydrogen‐bonding interactions. In 4 the [Co(1)(dien)2]2+, [Co(2)(dien)2]2+ and [SbSe4]3? ions form layered structures via N–H···Se hydrogen bonds. The [Co(3)(dien)2]2+ ion is located between the layers, and interacts with the layers by N–H···Se bonds. The synthesis and solid state structural studies on the title compounds show that the higher reaction temperature is helpful for the formation of selenidoantimonate(V) compounds in the synthesis of selenidoantimonate from the M2+/Sb/Se/dien system. 1 – 4 start to decompose at temperature about 210 °C in N2 atmosphere. They lose dien ligands at a wide temperature range of 210–450 °C with multisteps for 1 – 3 and a single step for 4 .  相似文献   

8.
Syntheses and Crystal Structures of Chalcogenido‐bridged Nickel Cluster Compounds [Ni5Se4Cl2(PPhEt2)6], [Ni12Se12(PnPr3)6], and [Ni18S18(PiPr3)6] The reaction of (R)ESiMe3 (R = SiMe3, Mes = C9H11; E = S, Se) with [NiCl2(PPhEt2)2] and [NiCl2(PR3)2] (R = nPr, iPr) gives new chalcogenido‐bridged nickel cluster compounds [Ni5Se4Cl2(PPhEt2)6]·2THF ( 1 ), [Ni12Se12(PnPr3)6]·2THF ( 2 ), and [Ni18S18(PiPr3)6]·2THF ( 3 ). The structures of these compounds were determined by single crystal X‐ray structural analyses.  相似文献   

9.
A three‐dimensional cyano‐bridged copper(II) complex, [Cu(dien)Ag(CN)2]2[Ag2(CN)3][Ag(CN)2] ( 1 ) (dien = diethylenetriamine), has been prepared and characterized by X‐ray crystallography. Complex 1 crystallized in the monoclinic space group P21/n with a = 6.988(2), b = 17.615(6), c = 12.564(4) Å, β = 90.790(5)°. The crystal consists of cis‐[Cu(dien)]2+ units bridged by [Ag(CN)2] to form a zig‐zag chain. The Ag atoms of the free and bridging [Ag(CN)2] link together to form additional infinite zig‐zag chains with short Ag···Ag distances. The presence of Ag···Ag interactions effectively increases the dimensionality from a 1‐D chain to a 3‐D coordination polymer.  相似文献   

10.
[Ga(en)3][Ga3Se7(en)] · H2O: A Gallium Chalcogenide with Chains of [Ga3Se6Se2/2(en)]3– Bicycles The new selenidogallate [Ga(en)3][Ga3Se7(en)] · H2O ( I ) was produced from a ethylendiamine suspension of Ga and Se at 130 °C. I crystallizes in the orthorhombic space group Pna21 with unit constants a = 1347.9(3) pm, b = 961.6(1) pm, c = 1967.6(4) pm and Z = 4. The crystal structure contains an anion so far not observed in gallium chalcogenides. It is built from [Ga3Se6Se2/2(en)]3– bicycles of three GaIIIL4 tetrahedra (L = en, Se) connected via selenium corners to linear chains. The cations, GaIII ions coordinated by three ethylendiamine in a distorted octahedral geometry are positioned in the holes of the hexagonal rod packing of these chains.  相似文献   

11.
The reactions of elemental nickel and tellurium and of ZnTe with excess AsF5 in liquid SO2 yield [M(SO2)6](Te6)[AsF6]6 (M = Ni, Zn) as orange crystals. The crystal structure determinations (triclinic, , M = Ni: a = 1632.59(2), b = 1795.06(1), c = 1822.97(2) pm, α = 119.11(4), β = 90.78(4), γ = 106.28(4)°, V = 4408.24(8)·106pm3, Z = 4) show the two compounds to be isotypic. The structures are made up of discrete [M(SO2)6]2+ complexes, Te64+ clusters and octahedral [AsF6]? ions. In the [M(SO2)6]2+ complexes the metal ions are surrounded octahedrally by six SO2 molecules bound via the O atoms. The Te64+ polycations are of trigonal prismatic shape with short Te–Te bonds within the triangular faces (270 pm) and long Te–Te bonds along the edges parallel to the pseudo C3 axes of the prisms (312 pm). The arrangement of the ions is related to the Li3Bi structure type. [M(SO2)6]2+ complexes and Te64+ polycations together form a distorted cubic closest packing with all tetrahedral and octahedral interstices filled by [AsF6]? ions. The analogous reaction starting from CdTe did not yield a compound containing simultaneously [Cd(SO2)n]2+ complexes and tellurium polycations but instead Te6[AsF6]4 · 2 SO2 besides [Cd(SO2)2][AsF6]2 were obtained. It crystallizes isotypically to [Mn(SO2)2][AsF6]2 (Mews, Zemva, 2001) (orthorhombic, Fdd2, a = 1534.96(3), b = 1812.89(3), c = 892.28(3) pm, V = 2483·106 pm3, Z = 4).  相似文献   

12.
[Ag2(μ-dppm)2(tptz)(MeCN)](SbF6)2·2H2O·2MeCN (1), [Ag2(μ-dppm)2(tptz)2](SbF6)2·1.75H2O (2) and [Ag2(μ-dppm)(tptz)2](SbF6)2· 2MeCN (3) were synthesized by self-assembly with metal diphosphine [Ag2(μ-dppm)2 (MeCN)2](SbF6) 2 and tptz as components in different molar ratios [(dppm = bis(diphenylphosphino)methane and tptz = 2,4,6-tris(2′-pyridyl)-1,3,5-triazine)] and characterized by IR spectra, elemental analysis, 1H NMR spectra, 31P NMR spectra and Visible–Ultraviolet spectra. Structures of all the complexes were determined by X-ray analysis. π − π interactions were found in complex (3). Further studies show that all the complexes were of well luminescent properties both in solution and solid state.  相似文献   

13.
Syntheses and Crystal Structures of new Selenido‐ and Selenolato‐bridged Copper Clusters: [Cu38Se13(SePh)12(dppb)6] (1), [Cu(dppp)2][Cu25Se4(SePh)18(dppp)2] (2), [Cu36Se5(SePh)26(dppa)4] (3), [Cu58Se16(SePh)24(dppa)6] (4), and [Cu3(SeMes)3(dppm)] (5) The reactions of copper(I) chloride or copper(I) acetate with monodentate phosphine ligands (PR3; R = organic group) and Se(SiMe3)2 have already lead to the formation of CuSe clusters with up to 146 copper and 73 selenium atoms. If the starting materials and the bidentate phosphine ligands (Ph2P–(CH2)n–PPh2, n = 1: dppm, n = 3: dppp, n = 4: dppb; Ph2P–C≡C–PPh2: dppa) and silylated chalcogen derivates are changed (RSeSiMe3; R = Ph, Mes) a series of new CuSe clusters can be synthesized. From single crystal X‐ray structure analysis one can characterise [Cu38Se13(SePh)12(dppb)6] ( 1 ), [Cu(dppp)2] · [Cu25Se4(SePh)18(dppp)2] ( 2 ), [Cu36Se5(SePh)26(dppa)4] ( 3 ), [Cu58Se16(SePh)24(dppa)6] ( 4 ) and [Cu3(SeMes)3(dppm)] ( 5 ). In this new class of CuSe clusters, compounds 1 and 4 possess a spherical cluster skeleton, wheras 2 and 3 have a layered cluster core.  相似文献   

14.
Oxidative Addition of N‐chlorotriphenylphosphoraneimine onto Phosphorus(III) Chloride and Antimony(III) Chloride. Crystal Structures of (Cl3PNPPh3)2[PCl6][ClHCl], [SbCl4(HNPPh3)2][SbCl6], and [Sb(NPPh3)4][SbCl6] Phosphorus(III) chloride reacts with N‐chlorotriphenylphosphoraneimine, ClNPPh3, in CH2Cl2 solution strongly exothermically via oxidative addition to give (Cl3PNPPh3)2[PCl6][ClHCl] ( 1 ). As a by‐product, Ph3PNP(O)Cl2 can be obtained, which is formed from PCl3 and ClNPPh3 in the presence of POCl3. In contrast to these results, antimony(III) chloride reacts with ClNPPh3 in CH2Cl2 solution to give a mixture of the phosphoraneimine complex [SbCl4(HNPPh3)2][SbCl6] ( 2 ) and the phosphoraneiminato complex [Sb(NPPh3)4][SbCl6] ( 3 ). The complexes 1 ‐ 3 were characterized by IR spectroscopy and by single crystal X‐ray determinations. 1 : Space group C2/c, Z = 4, lattice dimensions at 193 K: a = 3282.0(2), b = 798.7(1), c = 1926.1(2) pm, β = 107.96(1)°, R1 = 0.0302. 1 contains [Cl3PNPPh3]+ cations with PN bond lengths of 152.5(2) and 160.9(2) pm, and a PNP bond angle of 140.5(1)°. 2 ·CH2Cl2: Space group , Z = 2, lattice dimensions at 193 K: a = 1031.2(1), b = 1448.3(2), c = 1811,4(2) pm, α = 70.96(1)°, β = 87.67(1)°, γ = 75.37(1)°, R1 = 0.0713. 2 ·CH2Cl2 contains cations [SbCl4(HNPPh3)2]+ with octahedrally coordinated Sb atom and the HNPPh3 ligand molecules being in trans‐position. Sb–N bond lengths are 207.6(6) and 209.3(6) pm, PN bond lengths 162.3(7) and 160.8(7), which approximately corresponds with double bonds. 3 ·0.5CH2Cl2: Space group P4/n, Z = 2, lattice dimensions at 193 K: a = b = 1678.8(1), c = 1244.3(1) pm, R1 = 0.0618. 3 ·0.5CH2Cl2 contains [Sb(NPPh3)4]+ cations with tetrahedrally coordinated Sb atom and short Sb–N bond lengths of 193.7(6) pm. The PN distances of the phosphoraneiminato ligands, (NPPh3)? with 156.5(6) pm, correspond with double bonds, the SbNP bond angles are 130.6(3)°.  相似文献   

15.
The betain‐like carbodiphosphorane CS2 adduct S2CC(PPh3)2 ( 1 ) reacts with Ag(I) salts which contain weakly coordinating anions such as [BF4]? or [Al{OC(CF3)3}4]? to produce the cluster compounds [Ag6{S2CC(PPh3)2}4][BF4]6 ( 2 ) and [Ag4{S2CC(PPh3)2}4][Al{OC(CF3)3}4]4 ( 3 ), respectively, as orange yellow crystals containing solvent molecules. In the solid state the Ag4 unit in 3 forms a tetrahedron, and in the Ag6 core of 2 two of the opposite edges of the tetrahedron are bridged by Ag+ ions. The clusters are held together by argentophilic interactions, and each sulfur atom of 1 is coordinated to four (as in 2 ) or three (as in 3 ) silver atoms. The compounds are characterized by IR and 31P NMR spectroscopic studies and by X‐ray diffraction analyses.  相似文献   

16.
The hexachalcogenodistannates K6[SnIII2Se6] or Li4[SnIV2Te6]·8en were recently reported to simultaneously act as mild oxidants and chalcogenide sources in reactions with CoCl2/LiCp* (Cp* = pentamethylcyclopentadienide) while the Sn—E (E = Se, Te) fragment is not kept in the products, e.g. [(Cp*Co)3(μ3‐Se)2], [(Cp*Co)3(μ3‐Se)2][Cl2Co(μ2‐Cl)2Li(thf)2] or [(Cp*Co)4(μ3‐Te)4]. In search of related reagents with possibly different reaction behavior, we isolated and crystallographically characterized isotypic compounds [enH]4[SnIV2Se6]�en ( 1 ), and [enH]4[SnIV2Te6en ( 2 ) (en = 1, 2‐diaminoethane), that result from an uncommon disproportion/re‐arrangement reaction: distannate(III) K6[Sn2E6] (E = Se, Te) was reacted with en·2HCl to yield 1 or 2 under disproportion of SnIII to SnII and SnIV. Another pathway was necessary to synthesize the respective but solvent‐free thiostannate [enH]4 [SnIV2S6] ( 3 ), since the phase “K6[Sn2S6]” is unknown. This second method started out from SnCl4·2THF and S(SiMe3)2 in en solution. However, using E(SiMe3)2 (E = Se, Te) instead of S(SiMe3)2, 1 and 2 are also obtained this way. 1—3 are the first chalcogenostannates that exhibit exclusively [enH]+ counterions. The compounds were characterized by means of X‐ray crystallography and NMR spectroscopy. They seem to be suitable for reactions towards group 8‐10 metal complexes. Preliminary experiments indicate that the binary anions 1 — 3 coordinated by 1‐aminoethylammonium ions react more slowly compared to the anionic phases tested until now.  相似文献   

17.
Pushing the limits of coordination chemistry : The most weakly coordinated silver complexes of the very weakly coordinating solvents dichloromethane and liquid sulfur dioxide were prepared. Special techniques at low temperatures and the use of weakly coordinating anions allowed structural characterization of [Ag(OSO)][Al{OC(CF3)3}4], [Ag(OSO)2/2][SbF6], and [Ag(Cl2CH2)2][SbF6] (see figure). An investigation of the bonding shows that these complexes are mainly stabilized by electrostatic monopole–dipole interactions.

  相似文献   


18.
Synthesis, Crystal Structure, and Solid State Phase Transition of Te4[AsF6]2·SO2 The oxidation of tellurium with AsF5 in liquid SO2 yields Te42+[AsF6]2 which can be crystallized from the solution in form of dark red crystals as the SO2 solvate. The crystals are very sensitive against air and easily lose SO2, so handling under SO2 atmosphere or cooling is required. The crystal structure was determined at ambient temperature, at 153 K, and at 98 K. Above 127 K Te4[AsF6]2·SO2 crystallizes orthorhombic (Pnma, a = 899.2(1), b = 978.79(6), c = 1871.61(1) pm, V = 1647.13(2)·106pm3 at 297 K, Z = 4). The structure consists of square‐planar Te42+ ions (Te‐Te 266 pm), octahedral [AsF6] ions and of SO2 molecules which coordinate the Te4 rings with their O atoms in bridging positions over the edges of the square. At room temperature one of the two crystallographically independent [AsF6] ions shows rotational disorder which on cooling to 153 K is not completely resolved. At 127 K Te4[AsF6]2·SO2 undergoes a solid state phase transition into a monoclinic structure (P1121/a, a = 866.17(8), b = 983.93(5), c = 1869.10(6) pm, γ = 96.36(2)°, V = 1554, 2(2)·106 pm3 at 98 K, Z = 4). All [AsF6] ions are ordered in the low temperature form. Despite a direct supergroup‐subgroup relationship exists between the space groups, the phase transition is of first order with discontinuous changes in the lattice parameters. The phase transition is accompanied by crystal twinning. The main difference between the two structures lies in the different coordination of the Te42+ ion by O and F atoms of neighbored SO2 and [AsF6] molecules.  相似文献   

19.
The reaction of Hg(AsF6)2 with a large molar excess of KrF2 in anhydrous HF has afforded the first homoleptic KrF2 coordination complex of a metal cation, [Hg(KrF2)8][AsF6]2?2 HF. The [Hg(KrF2)8]2+ dication is well‐isolated in the low‐temperature crystal structure of its HF‐solvated [AsF6]? salt, and consists of eight KrF2 molecules that are terminally coordinated to Hg2+ by means of Hg?F(KrF) bonds to form a slightly distorted, square‐antiprismatic coordination sphere around mercury. The Raman spectrum of [Hg(KrF2)8]2+ was assigned with the aid of calculated gas‐phase vibrational frequencies. Computational studies indicate that both electrostatic and orbital interactions are important for metal–ligand bonding and provide insight into the geometry of the [Hg(KrF2)8]2+ cation and the nature of noble‐gas difluoride ligand bonding.  相似文献   

20.
Anionic Antimony(III) Fluoro Complexes with protonated Azacrownethers as Counterions. Crystal Structures and Mößbauer Spectra of [H2cyclam]2[Sb4F16] · 2H2O, [H4cyclam][Sb2F10] · 2 HF, and [H4(tetramethyl)cyclam]2[Sb4F15][HF2][F]4 (cyclam = 1,4,7,11-Tetraazacyclotetradecane) The title compounds are formed by reaction of SbF3 with the respective azacrownether. [H2cyclam]2[Sb4F16] · 2 H2O contains tetrameric anions which weakly associate to chains. The [H2cyclam]2+ ions possess an unusual conformation due to intramolecular hydrogen bonds. [H4cyclam][Sb2F10] · 2HF contains the dimeric hitherto unknown [Sb2F10]4? ion; two HF molecules are attached to it by hydrogen bonds. The structure of [H4(tetramethyl)cyclam]2[Sb4F15][HF2][F]4 is made up of the two dimensional polymeric [HSb4F17]4? anion. The tetra-protonated tetramethylcyclam ions form host-guest complexes with fluoride ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号