首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Abstract

New metal complexes derived from the reaction of N-benzoyl-N′-carboxyl methylthiopropylidine thiourea (BCMT) with Cu(II), Co(II), Ni(II), and Fe(III) chloride and/or acetate salts have been synthesized and characterized using elemental analyses, molar conductance, spectral (IR, UV-Vis., mass, 1H NMR), thermal (TGA, DTG), and magnetic measurements. The IR results showed the modes of coordination in case of mononuclear and binuclear metal complexes. Different types of geometries are suggested on the basis of the spectral and the magnetic data. Also, the ligand field parameters for the metal complexes were calculated. The amounts of the solvents as well as the mechanism of decomposition were proposed using thermal measurements. The results of biological activity of the ligand give us the promise to be effective in tumors treatment.  相似文献   

2.
Complexes of Ni(II), Co(II), Cu(II), Zn(II), Cd(II), Hg(II) and U(VI)O2 with 2-acetylpyridine-[N-(3-hydroxy-2-naphthoyl)] hydrazone (H2APHNH) have been prepared and characterized by elemental analysis, molar conductance, thermal (TG, DTG), spectral (1H NMR, IR, UV–Vis, ESR) and magnetic measurements. 1H NMR spectrum of the ligand suggests the presence of intramolecular hydrogen bonding. IR spectra show that H2APHNH is a bidentate, tridentate and/or tetradentate ligand. Thermal decomposition of some complexes ended with metal oxide as a final product. ESR spectra gave evidence for the proposed structure and the bonding for some Cu(II) complexes. Biological activity measurements were carried out.  相似文献   

3.
A new series of metal complexes of Pd(II), Cd(II) and Cu(II, I) of polydentate Schiff base ligand (H2L), namely ((Z)-2-(phenylamino)-N'-(thiophen-2-ylmethylene) acetohydrazide) have been prepared. The ligand and its metal complexes have been characterized based on various physicochemical studies as elemental analyses, molar conductance, spectral (UV–Vis, MS, IR, 1H NMR, 13C NMR and XRD), magnetic moment measurements and thermal studies (TG, DTG). In the view of previous studies, the ligand (H2L) acts as polydentate one and coordinates with metal ions to form all metal complexes. The kinetic and thermodynamic parameters of decomposition process (ΔG, ΔH, ΔS) were calculated. The possible structures of the metal complexes have been computed using the molecular mechanic calculations using the hyper chem. 8.03 molecular modeling program. The calculations are performed to obtain the optimized molecular geometry. The antibacterial study of the selected compounds was assayed against two pathogenic bacteria. Moreover, the complexes (Cu II, I), Cd(II), Pd(II)) and the ligand revealed excellent antioxidant properties and could be useful in fighting the free radicals which occur in close connection with cancerous cells. It was remarkable that the two complexes (Cu II, I) demonstrated stronger antioxidant effects than their parent compounds. It is clear that the new complexes are good active compounds for use in a variety of applications.  相似文献   

4.
Co(II), Ni(II) and Cu(II) chloro complexes of benzilic hydrazide (BH) have been synthesized. Also, reaction of the ligand (BH) with several copper(II) salts, including NO3 ?, AcO?, and SO4 ? afforded metal complexes of the general formula [CuLX(H2O) n nH2O, where X is the anion and n = 0, 1 or 2. The newly synthesized complexes were characterized by elemental analysis, mass spectra, molar conductance, UV–vis, IR spectra, magnetic moment, and thermal analysis (TG/DTG). The physico-chemical studies support that the ligand acts as monobasic bidentate towards metal ion through the carbonyl and hydroxyl oxygen atoms. The spectral data revealed that the geometrical structure of the complexes is square planar for Cu (II) complexes and tetrahedral for Co(II) and Ni(II) complexes. Structural parameters of the ligand and its complexes have been calculated. The ligand and its metal complexes are screened for their antimicrobial activity. The catalytic activities of the metal chelates have been studied towards the oxidative decolorization of AB25, IC and AB92 dyes using H2O2. The catalytic activity is strongly dependent on the type of the metal ion and the anion of Cu(II) complexes.  相似文献   

5.
Abstract

New metal complexes of Co(II), Cu(II), Ni(II), Zn(II), Mn(II), Fe(III), Ru(III), UO2(II), and VO(II) with the Schiff base, 2-(5-((2-chlorophenyl)diazenyl)-2-hydroxy- benzylidene) hydrazine-carbothioamide (H2L) have been prepared and characterized by elemental and thermal analyses, FT-IR, UV–Vis, mass spectra, 1H-NMR, and ESR as well as conductivity and magnetic moments measurements. The IR spectra showed that the ligand acts as neutral tridentate, neutral bidentate or monobasic tridentate ligand. The geometries of metal complexes were either octahedral or square pyramidal. The ESR spectra of the solid copper(II) complexes indicated an axial symmetry type of a d(x2-y2) ground state with considerably ionic or covalent environment. The effect of the presence of an azo group on the biological activity of the ligand was investigated. The ligand and its complexes are biologically inactive due to the presence of azo group.

Supplemental materials are available for this article. Go to the publisher's online edition of Phosphorus, Sulfur, and Silicon and the related elements to view the free supplemental file.  相似文献   

6.
A new series of metal complexes containing Co(II), Pd(II), Fe(III) chloride and Cu(II) salts (chloride, bromide, sulphate and perchlorate) have been prepared with Schiff base ligand ( HL ). The synthesized compounds were elucidated using elemental analyses, spectral techniques, molar conductance, magnetic measurements and thermogravimetric studies. The analytical data established (1 M:1 L) stoichiometry for complexes ( 1 ), ( 2 ), ( 4 ), ( 6 ) and ( 7 ) as well as (1 M:2 L) and (2 M:3 L) stoichiometry for complexes ( 5 ) and ( 3 ), respectively. As a result, the ligand HL coordinates in complexes ( 1 ), ( 2 ), ( 4 ), ( 6 ) as a monobasic tridentate ONN moiety via the oxygen atom of the deprotonated phenolic OH, the nitrogen atoms of the azomethine and the imine group in pyrazolopyridine ring. While, it behaves as a neutral bidentate in complexes ( 3 , 7 ), chelates via oxygen and nitrogen atoms of enolic OH and azomethine groups. Also, in complex ( 5 ) Cu2+ ion binds via NO sits of two ligand molecules in its monobasic and neutral forms. The magnetic moment and electronic spectral data proposed octahedral structure for complexes ( 2 , 3 and 7 ) as well as triagonal bipyramidal and square pyramidal geometry for complexes ( 1 and 4 ), while, chelates ( 5 ) and ( 6 ) possess square planar geometry. TG/DTG studies confirmed the chemical formula for these complexes and established the thermal decomposition processes ended with the formation of metal or metal oxides contaminated with carbon residue. An axial electron spin resonance spectra were suggested for Cu(II) complexes pointing to 2B1g as a ground state with hyperfine structure for complex ( 4 ). In vitro antibacterial and antioxidant activities were performed for HL ligand and its metal complexes. The biological studies indicate that complex ( 3 ) has better antibacterial activity compared to the ligand and the other complexes.  相似文献   

7.
Complexes [M(L)(L′)Cl?·?H2O], where M?=?Co(II), Ni(II), Cu(II), Zn(II), Cd(II), and Hg(II), L?=?ligand derived from reaction between benzofuran-2-carbohydrazide and 3,4,5-trimethoxybenzaldehyde (TMeOBFC) and L′?=?2-aminothiophenol (2-atp), have been synthesized. The structures of the complexes have been proposed from analytical data, IR, UV-Vis, 1H NMR, direct analysis in real time-mass spectra, ESR spectral data, magnetic, and thermal studies. The complexes are soluble in DMF and DMSO. Molar conductance values indicate that the complexes are non-electrolytes. Antibacterial and antifungal activities of the ligands and their metal complexes have been obtained against bacteria Escherichia coli and Staphylococcus aureus and against fungi Aspergillus niger and Aspergillus flavus.  相似文献   

8.
Mn(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) complexes of multifunctional triaminoxime have been synthesized and characterized by elemental analyses, IR, UV–Vis spectra, magnetic moments, 1H- and 13C-NMR spectra for ligand and its Ni(II) complex, mass spectra, molar conductances, thermal analyses (DTA, DTG and TG) and ESR measurements. The IR spectral data show that the ligand is bi-basic or tri-basic tetradentate towards the metals. Molar conductances in DMF indicate that the complexes are non-electrolytes. The ESR spectra of solid copper(II) complexes [(HL)(Cu)2(Cl)2] · 2H2O (2) and [(L)(Cu)3(OH)3(H2O)6] · 7H2O (6) show axial symmetry of a d x²???y 2 ground state; however, [(HL)(Co)] (4) shows an axial type with d Z 2 ground state and manganese(II) complex [(L)(Mn)3(OH)3(H2O)6] · 4H2O (10) shows an isotropic type. The biological activity of the ligand and its metal complexes are discussed.  相似文献   

9.
Complexes of Co(II), Ni(II) and Cu(II) with the Schiff base (LH) derived from ceftazidime and salicylaldehyde were synthesized. The proposed structures of the new metal complexes based on the results of elemental analyses, molar conductivity, IR, DRUV and 1H NMR spectra, effective magnetic moment and thermal analysis were discussed. The surface morphology of Schiff base and metal complexes was studied by SEM. The composition of the metal complexes was ML2, where L is the deprotonated Schiff base ligand and M = Co(II), Ni(II) and Cu(II). IR spectral data indicated the Schiff base ligand being bidentately coordinated to the metallic ions with N and O atoms from azomethine and phenolic groups. All the complexes have square-planar geometry and are nonelectrolytes. The thermal analysis recorded that TG, DTG, DTA and DSC experiments confirmed the assigned composition and gave information about the thermal stability of complexes in dynamic air atmosphere. Theoretical investigation of the molecular structure of Schiff base ligand and its complexes was studied using programs dedicated to chemical modeling and quantomolecular calculation of chemical properties. The newly synthesized complexes were tested for in vitro antibacterial activity against selected Gram-negative and Gram-positive bacterial strains, and they exhibited an antibacterial activity superior to that of the Schiff base ligand.  相似文献   

10.
In this study, 4-hydroxysalicylaldehyde-p-aminoacetophenoneoxime (LH) was synthesized starting from p-aminoacetophenoneoxime and 4-hydroxysalicylaldehyde. Complexes of this ligand with Co(II), Ni(II), Cu(II) and Zn(II) were prepared with a metal?: ligand ratio of 1?:?2. The ligand and its metal complexes have been characterized by elemental analyses, IR, 1H- and 13C-NMR spectra, magnetic susceptibility measurements and thermogravimetric analyses (TGA).  相似文献   

11.
Mn(II), Co(II), and Cu(II) complexes with novel heterocyclic ligands derived from anthranilic acid and its 5-bromo derivative with ethyl-2-thionylpyruvate were synthesized and characterized by means of elemental analysis, molar conductivity, spectral methods (IR, 1H NMR, and UV-Vis spectra) and simultaneous thermal analysis (TG and DTG) techniques. The IR spectra of the two ligands and their complexes were used to identify the type of bonding. The kinetic thermodynamic parameters such as: E*, ΔH*, ΔS*, and ΔG* were estimated from the DTG curves. New ligands and their complexes have been tested for their possible antibacterial and antifungal activity.  相似文献   

12.
13.
The complexes of alloxan with Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II) Cd(II), Hg(II), Ti(IV) and Zr(II) have been isolated and characterized on the basis of elemental analysis, molar conductivity, spectral studies (mid infrared, 1H-NMR and UV/vis spectra), X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). The thermal decomposition of the metal complexes was studied by thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The kinetic thermodynamic parameters, E*, ΔH*, ΔS* and ΔG*, were calculated using Coats and Redfern and Horowitz and Metzger equations. The ligand and its complexes have been studied for possible biological activity including antibacterial and antifungal activity.  相似文献   

14.
A series of tridentate pyrazolone-based thio-Schiff bases were synthesized by the interaction of 4-acyl/aroyl pyrazolones with thiosemicarbazide in an ethanolic medium. All of these ligands were characterized on the basis of elemental analysis, infrared (IR), 1H- and 13C-NMR data. Nuclear magnetic resonance (NMR) suggests the amine-one form of ligand in solution at room temperature. Copper Schiff-base complexes, [Cu(L)(H2O)], have been prepared by the interaction of the aqueous solution of copper sulfate pentahydrate with hot ethanolic solution of the appropriate ligand. The resulting complexes have been characterized by elemental analysis, metal content determination, molar conductance, fast atom bombardment mass spectra, magnetic measurements, thermogravimetric analysis (TGA), IR, and electronic spectral studies. Thermal stability, heat capacity, and activation energy of thermal degradation for these complexes were determined by TGA, differential thermal analysis, and differential scanning calorimetry. Suitable structures are proposed for these complexes.  相似文献   

15.
Schiff-base complexes [ML(H2O)2(Ac)]nH2O (M?=?Co(II), Ni(II) and Zn(II); L?=?Schiff-base ligand derived from 2-acetylpyridine and alanine and n?=?1–3/2) were synthesized and characterized by elemental analysis, spectral (FTIR, UV/Vis, MS, 1H-NMR), thermal (TGA), conductance and magnetic moment measurements. The results suggest octahedral geometry for all the isolated complexes. IR spectra show that the ligand coordinates to the metal ions as mononegative tridentate through pyridyl nitrogen, azomethine nitrogen and carboxylate oxygen after deprotonation of the hydroxyl group. Semi-empirical calculations PM3 and AM1 have been used to study the molecular geometry and the harmonic vibrational spectra to assist the experimental assignments of the complexes.  相似文献   

16.
The metal ions Co(II), Ni(II), Zn(II), Zr(IV), and Hg(II) reacted with synthesized Schiff base (L) in mole ratios 1:2 (M:L) formed metal complexes. The structure of the prepared compounds was identified based on the data obtained from elemental analyses, magnetic measurement, melting point, conductivity, Fourier-transform infrared, UV–Vis., nuclear magnetic resonance spectroscopy, X-ray diffraction (XRD) spectra, and thermal analysis (TG/DTG [thermogravimetric/differential thermal analysis]). The results indicate that the L bound as bidentate through the oxygen atom of the hydroxyl group and nitrogen atom of the azomethine group with the metal ions and the complexes is electrolyte in nature. TG/DTG studies confirmed the chemical formula for complexes. The kinetic and thermodynamic parameters such as E*, ΔH*, ΔS*, and ΔG* were determined by using Coats–Redfern and Horowitz–Metzger methods at n = 1 and n ≠ 1. The XRD patterns exhibited a semicrystalline nature lying between the amorphous and crystalline nature for L, (D), and (E), but the complexes (A), (B), and (C) possessed a crystalline character. Density functional theory confirmed the structural geometry of the complexes. In vitro antimicrobial activities were performed for L and its metal complexes.  相似文献   

17.
Thiosemicarbazone derivatives are formed on reaction between acetophenone, salicylaldehyde, benzophenone and/or 2-hydroxy-4-methoxybenzophenone and thiosemicarbazide or its N4H substituents (ethyl-, phenyl-, and p-chlorophenyl-). The ligands were investigated by elemental analysis and spectral (IR, 1H?NMR and MS) studies. The formulas of the prepared complexes have been suggested by elemental analyses and confirmed by mass spectra. The coordination sites of each ligand were elucidated using IR spectra revealing bidentate and tridentate coordination. Different geometries for the complexes were proposed on the basis of electronic spectra and magnetic measurements. The complexes have been analyzed thermally (TG and DTG) and the kinetic parameters for some of their degradation steps were calculated.  相似文献   

18.
Transition metal [Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II)] complexes of a new Schiff base, 3-acetylcoumarin-o-aminobenzoylhydrazone were synthesized and characterized by elemental analyses, magnetic moments, conductivity measurements, spectral [Electronic, IR, 1H and 13C NMR, EPR] and thermal studies. The ligand crystallizes in the monoclinic system, space group P21/n with a?=?9.201(5), b?=?16.596(9), c?=?11.517(6)?Å, β?=?101.388(9)°, V?=?1724.2 (17)?Å3 and Z?=?4. Conductivity measurements indicated Mn(II) and Co(II) complexes to be 1?:?1 electrolytes whereas Ni(II), Cu(II), Zn(II) and Cd(II) complexes are non-electrolytes. Electronic spectra reveal that all the complexes possess four-coordinate geometry around the metal.  相似文献   

19.
The 12- and 14-membered diazadioxo macrocyclic ligands, 1,2?:?7,8-diphenyl-6,9-diaza-3,12-dioxocyclododecane (L1) and 1,2?:?8,9-diphenyl-7,10-diaza-3,14-dioxocyclotetradecane (L2), were synthesized by condensation between o-phenylenediamine, 1,2-dibromoethane/1,3-dibromopropane, and catechol. Metal complexes [ML1Cl2] and [ML2Cl2] [M?=?Co(II), Ni(II), Cu(II), and Zn(II)] were prepared by interaction of L1 or L2 with metal(II) chlorides. The ligands and their complexes were characterized by elemental analyses, IR, 1H, and 13C NMR, EPR, UV-Vis spectroscopy, magnetic susceptibility, conductivity measurements, and Electrospray ionization-mass spectral (ESI-MS) studies. The results of elemental analyses, ESI-MS, Job's method, and conductivity measurements confirmed the stoichiometry of ligands and their complexes while absorption bands and resonance peaks in IR and NMR spectra confirmed the formation of ligand framework around the metal ions. Stereochemistry was inferred from the UV-Vis, EPR, and magnetic moment studies.  相似文献   

20.
A novel Schiff base has been designed and synthesized using the bioactive ligand obtained from 4-aminoantipyrine, 3,4-dimethoxybenzaldehyde and 2-aminobenzoic acid. Its Cu(II), Co(II), Ni(II), Zn(II) complexes have also been synthesized in ethanol medium. The structural features have arrived from their elemental analyses, magnetic susceptibility, molar conductance, mass, IR, UV–Vis, 1H NMR and ESR spectral studies. The data show that the complexes have composition of ML2 type. The electronic absorption spectral data of the complexes suggest an octahedral geometry around the central metal ion. The interaction of the complexes with calf thymus (CT) DNA has been studied using absorption spectra, cyclic voltammetric, and viscosity measurement. The metal complexes have been found to promote cleavage of pUC19 DNA from the super coiled form I to the open circular form II. The complexes show enhanced antifungal and antibacterial activities compared with the free ligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号