首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study the influence of ternary and quaternary alloying elements (Pb, Cd, Cu or Cu–Pb and Cu–Cd) on structural, electrical, hardness and other mechanical properties of Sn–Sb alloys (using an X-ray diffractometer and optical microscope, the double bridge method, Vickers hardness tester and the dynamic resonance method) to produce the best alloy for bearing applications. Adding Cu or Pb to Sn–Sb alloys improves their bearing properties, such as the mechanical properties (elastic modulus, internal friction, hardness and fracture strain) and thermal conductivity. Also, adding Cu, Pb or Cu–Pb to Sn–Sb alloys makes them excellent in their bearing applications and environmental hazards when compared with the Pb 88Sn 10Cu 2 alloy for automotive applications (FIAT Normalizzazione) and the lead-based Babbitt bearing alloy.  相似文献   

2.
The effect of lead on the structure, electrical resistivity, internal friction, elastic modulus and thermal properties of Sn81Zn9Cd10 ternary alloys have been investigated using different experimental techniques with their analysis. In addition, properties of this alloy were compared with other Sn–Zn or Sn–Zn–Cd alloys and commercial solder alloys. It has a higher electrical resistivity, internal friction and lower elastic modulus when compared with Sn–Zn or Sn–Zn alloys with other additions such as Cd, Bi or In. The Sn61Zn9Cd10Pb20 alloy has a lower melting point, electrical resistivity and internal friction when compared with the commercial Pb–Sn solder alloy, but it has a similar elastic modulus.  相似文献   

3.
Optical microscopy, X-ray diffractometry, the double bridge method, the Vickers microhardness testing and dynamic resonance techniques have been used to investigate structure, electrical resistivity, hardness, internal friction and elastic modulus of quenched Bi–Pb–Sn–Cd–Sb penta-alloys. The properties of these penta-alloys are greatly affected by rapid quenching. The intermetallic compound χ(Pb–Bi) or Bi3Pb7 is obtained after rapid quenching using the melt-spinning technique, and this is in agreement with reports by other authors [Marshall, T. J., Mott, G. T. and Grieverson, M. H. (1975). Br. J. Radiol., 48, 924; Kamal, M., El-Bediwi, A. B. and Karman, M. B. (1998). Structure, mechanical properties and electrical resistivity of rapidly solidified Pb–Sn–Cd and Pb–Bi–Sn–Cd alloys. J. Mater. Sci.: Mater. Electron., 9, 425; Borromêe-Gautier, C., Giessen, B. C. and Grrant, N. J. (1968). J. Chem. Phys., 48, 1905; Moon, K.-W., Boettinger, W. J., Kattner, U. R., Handwerker, C. A. and Lee, D.-J. (2001). The effect of Pb contamination on the solidification behavior of Sn–Bi solders. J. Electron. Mater., 30, 45.]. The quenched Bi43.5Pb44.5Cd5Sn2Sb5 alloy has important properties for safety devices in fire detection and extinguishing systems.  相似文献   

4.
Alloys of composition Sn–8.5Sb–5.5Cu (in atomic percent) were rapidly solidified by a melt-spinning technique. The samples were irradiated at room temperature with GeV uranium ions of fluences between 9×108 and 9×1011 ions cm?2. X-ray diffraction analysis revealed the formation of a new-phase Cu11Sb3 as well as a reduction in the axial ratio (c/a) of the matrix (β -Sn) indicating the regular re-arrangement of atoms. Scanning force microscopy showed no surface topographic changes with the ion fluence. The mechanical properties (Young's modulus and hardness) of the irradiated alloys were studied as a function of ion fluence. The radiation-annealing process is discussed in terms of the evolution of both resistivity and hardness as a function of ion fluence.  相似文献   

5.
Microstructure, electrical, mechanical and thermal properties of quenched bismuth–tin eutectic, Rose (Bi50Sn22.9Pb27.1) and Wood’s (Bi50Sn12.5Pb25Cd12.5) alloys have been investigated using scanning electron microscopy, X-ray diffraction analysis, the double bridge method, the dynamic resonance method, Vickers hardness measurement and thermal analysis. Wood’s alloy (Bi–Pb–Sn–Cd) has low electrical resistivity and melting point but a high elastic modulus and internal friction when compared with the Rose (Bi–Pb–Sn) alloy. The presence of cadmium in Wood’s alloy decreases its melting point and electrical resistivity with an increase in its elastic modulus, which improves the mechanical properties. Wood’s alloy (Bi–Pb–Sn–Cd) has better properties, which make it useful in various applications such as in protection shields for radiotherapy, locking of mechanical devices and welding at low temperature.  相似文献   

6.
This study aimed at investigating the effect of adding copper (Cu) on some properties of the lead-free alloys which rapidly solidified from melt. X-ray analysis, hardness, elastic modulus, electrical conductivity and resistivity were studied. The results indicated that the alloy hardness and elastic modulus improved by increasing the copper (Cu) content and decreasing the zinc (Zn) content. The electrical conductivity ranged from 0.250 to 0.847?×?107 ohm?1 m?1 for the alloy under study. The electrical resistivity increases linearly with temperature until the melting point is reached. The residual resistivity results from disturbances in the lattice rather than caused by thermal vibration and the most drastic increases in the residual resistivity are caused by foreign atoms in solid solution with matrix metal. The electrical resistivity values ranged from 11.8 to 40?×?10?8 ohm m, when the copper content changed from 0.0 to 2.0 wt% and zinc changed from 8.0 to 10.0 wt%.  相似文献   

7.
It is important, for electronic application, to decrease the melting point of SnZn9 solder alloy because it is too high as compared with the most popular eutectic Pb–Sn solder alloy. Adding Cd causes structural changes such as phase transformations, dissolution of atoms and formation of Cd crystals in the quenched SnZn9 alloy, and its physical properties are affected by this change. For example, the melting point is decreased towards the melting point of the Pb–Sn eutectic alloy, or even much less. The structure, electrical and mechanical properties of quenched Sn91? x Zn9Cd x (x?=?0 or x?≥?5) alloys have been investigated. Adding Cd to a quenched SnZn9 alloy increases its electrical resistivity and decreases its elastic modulus and internal friction. The Sn71Zn9Cd20 alloy has the lowest melting point (162 °C) and electrical and internal frictions as compared with commercial Pb–Sn solder alloys.  相似文献   

8.
A series of Ni43Mn46Sn11−xSbx (x=0, 1, and 3) alloys were prepared by an arc melting method. The martensitic transition shifts to higher temperature with the increasing Sb content. The isothermal magnetization curves and Arrott plots around martensitic transition temperatures show a typical metamagnetic behavior. Under a low applied magnetic field of 10 kOe, large magnetic entropy changes around the martensitic transition temperature are 10.4, 8.9, and 7.3 J/kg K, for x=0, 1, and 3, respectively. The origin of the large magnetic entropy changes and potential application for Ni43Mn46Sn11−xSbx alloys as working substances in magnetic refrigeration are discussed.  相似文献   

9.
X-ray photoemission spectra, resistivity and susceptibility of CeNi2Sb2 and CeCu2Sb2 were measured and are discussed. The results indicate that these alloys are Kondo systems. For comparison of the valence band properties, the spectra of the isostructural alloys of RT2X2-type with R = La, Gd, T = Cu, Ni and X = Sn, Sb were investigated, too.  相似文献   

10.
A series of Sb-doped SnO2 samples, with doping levels 0, 3.1, 6.2, 11.9 and 14.0 at% Sb, has been hydrothermally prepared and characterized by X-ray powder diffraction. Diffraction lines were broadened, the line broadening being anisotropic. Both the line broadening and line anisotropy were dependent on the Sb doping level. The samples are tetragonal, space group P42/mnm and isostructural with TiO2(rutile). Sb doping of SnO2 causes the increase of unit-cell parameters. The structure of pure SnO2 and of samples containing 6.2 and 11.9 at% Sb has been refined by the Rietveld method. Crystal structure indicated that both Sb3+ and Sb5+ are substituted for Sn4+ in the SnO2 structure, Sb3+ being dominant for the investigated doped samples. The samples were also examined by 119Sn- and 121Sb-Mössbauer spectroscopy. Mössbauer spectroscopy confirmed the XRD results. Also, the values of the isomer shifts and quadrupole coupling constants indicated that the configuration around the Sb3+ site includes the presence of the stereochemically active lone pair electrons.  相似文献   

11.
We have studied Sb segregation at MnO/Ag(Sb) ceramic/metal heterophase interfaces employing three-dimensional atom-probe (3DAP) microscopy. Specimens are prepared by the internal oxidation of Ag(Mn) alloys, leading to the formation of nanometer-size MnO precipitates within a Ag(Mn) matrix. Sb is introduced into the internally oxidized specimens with a vapor diffusion treatment. Appreciable Sb segregation is observed only after a subsequent segregation anneal is performed, and the measured interfacial excess of Sb at the MnO/Ag(Sb) interfaces, Sb MnO/Ag, is determined directly. The temporal evolution of the MnO precipitates is followed for the different processing steps employed. It is shown that the concentration of silver within the MnO precipitates decreases from an initial value of 45–50 at.% Ag to less than 5 at.% Ag with increasing annealing time at the different processing temperatures. Thus the MnO precipitates form under paraequilibrium conditions and the precipitates inherit Ag from the matrix. With increasing aging time orthoequilibrium conditions prevail and the MnO precipitates reject the silver atoms they inherited from the matrix.  相似文献   

12.
To investigate the appearance of localized phonon modes, superconductive tunneling was performed into films of Pb0·9M0·1 (M = Ag, Cd, Ga, Ge, In, Mg, Mg, Sb, Sn, Te, Zn) and Pb0·97Sn0·03. The films were quench-condensed and later annealed at 30, 100 and 300°K. Structure in tunneling curves resulting from localized phonons was observed only for a well annealed In alloy film. For most of the impurities an absence of observable local phonon modes could be explained as due to a lack of solid solubility or of sufficient structural order in the film. For Na and Sn alloys, however, these arguments cannot be used. No modes could be seen for such alloys even in films condensed at room temperature, heat-treated slightly, and quenched directly into liquid helium.  相似文献   

13.
Rapid solidification of binary Cu-22%Sn peritectic alloys and Cu-5%Sn-5%Ni-5%Ag quaternary alloys was accomplished by glass fluxing, drop tube and melt spinning methods. The undercooled, by glass fluxing method, Cu-22%Sn peritectic alloy was composed of α(Cu) and δ(Cu41Sn11) phases. If rapidly solidified in a drop tube, the alloy phase constitution changed from α(Cu) and δ(Cu41Sn11) phases into a single supersaturated (Cu) phase with the reducing of droplet diameter, and the maximum solubility of Sn in (Cu)...  相似文献   

14.
The TDPAC technique was used to measure the magnetic hyperfine field (mhf) acting on Cd impurity in the Heusler alloys Pd2MnIn1-xSnx and Pd2MnSn1-ySby for various values of x and y in the range 0 ? x, y ? 1. The alloys of Pd2MnIn1-xSnx are antiferromagnetic at the In-rich end and ferromagnetic at the Sn-rich end, with a transition region x ≈ 0.5?0.7 where both phases coexist; the alloys containing Sn/Sb are ferromagnetic for all values of y. The mhf on the Cd impurity in the antiferromagnetic, transition and ferromagnetic regions of Pd2MnIn1-xSnx are respectively zero, -150 and -200 kOe. For the Sn/Sb alloys the field changes from -200 at the Sn-rich end to -235 kOe at the Sb-rich end. The values of the field very closely follow the trend of the ferromagnetic Curie temperatures for the same alloys as a function of the s-p electron concentration. The observed large distribution of field intensities (~20%) and the lower values of the field in the region x = 0.5?0.6 are attributed mainly to the effect of antiferromagnetic domains. The results are compared with previous Mössbauer mhf measurements at the sites of Sn and Sb in the same alloys as well as with measurements in other Heusler alloys.  相似文献   

15.
Microstructures and thermoelectric properties of Ge1Sb2Te4 and Ge2Sb2Te5 chalcogenide semiconductors have been investigated to explore the possibility of their thermoelectric applications. The phase transformation from the face-centered cubic to hexagonal structure was observed in Ge2Sb2Te5 compounds prepared by the melt spinning technique. The Seebeck coefficient and electrical resistivity of the alloys were increased due to the enhanced scattering of charge carriers at grain boundaries. The maximum power factors of the rapidly solidified Ge1Sb2Te4 and Ge2Sb2Te5 attained 0.975×10-3 W m-1K-2 at 750 K and 0.767×10-3 W m-1K-2 at 643 K respectively, higher than those of water quenched counterparts, implying that thermoelectric properties of GeSbTe based layered compounds can be improved by grain refinement. The present results show this class of chalcogenide semiconductors is promising for thermoelectric applications. PACS  84.60.Rb; 81.05.Hd; 72.20.Pa; 64.70.Kb; 61.66.Fn  相似文献   

16.
Despite the importance of a complete characterization of dendritic patterns in castings, the availability of studies on the development of tertiary dendrite arms is scarce in the literature. In the present study, the tip cooling rate, local solidification time, primary and tertiary dendrite arm spacings have been determined in Pb–Sb alloys castings directionally solidified under unsteady-state heat flow conditions. The alloys compositions experimentally examined are widely used in the as-cast condition for the manufacture of positive and negative grids of lead-acid batteries. The initial growth of tertiary dendritic arms from the secondary branches was found to occur only for a Pb–3.5 wt% Sb alloy at cooling rates in the range 0.4–0.2?K/s, with no evidence of this spacing pattern for Pb–Sb alloys having lower solute content. Tertiary dendritic branches have been observed along the entire casting lengths for alloys of the Pb–Sb hypoeutectic range having compositions higher than 4.0 wt% Sb. It is shown that a power function experimental law with a characteristic ?0.55 exponent is able to characterize the tertiary spacing evolution with the solidification cooling rate for alloys compositions ≥4.0 wt% Sb. The only exception was the Pb–3.5 wt% Sb alloy for which λ 3 exhibited significant lower values when compared with the experimental values obtained for the other Pb–Sb alloys for a same solidification cooling rate.  相似文献   

17.
A theoretical study on Sb-doped SnO2 has been carried out by means of periodic density functional theory (DFT) at generalized gradient approximation (GGA) level. Stability and conductivity analyses were performed based on the formation energy and electronic structures. The results show that Sn0.5Sb0.5O2 solid solution is stable because the formation energy of Sn0.5Sb0.5O2 is −0.06 eV. The calculated energy band structure and density of states showed that the band gap of SnO2 narrowed due to the presence of the Sb impurity energy levels in the bottom of the conduction band, namely there is Sb 5s distribution of electronic states from the Fermi level to the bottom of conduction band after the doping of antimony. The studies provide a theoretical basis to the development and application of Sn1−xSbxO2 solid solution electrode.  相似文献   

18.
The elastic modulus, internal friction and stiffness values of quenched SnSb bearing alloy have been evaluated using the dynamic resonance technique. Annealing for 2 and 4 h at 120, 140 and 160 °C caused variations in the elastic modulus, internal friction and stiffness values. This is due to structural changes in the SnSb matrix during isothermal annealing such as coarsening in the phases (Sn, Sb or intermetallic compounds), recrystallization and stress relief. In addition, adding a small amount (1 wt.%) of Cu or Ag improved the bearing mechanical properties of the SnSb bearing alloy. The SnSbCu1 alloy has the best bearing mechanical properties with thermo-mechanical stability for long time at high temperature.  相似文献   

19.
The effects of nitrogen doping on the chemical bonding state, microstructure, electrical property and thermal stability of Ge15Sb85 film were investigated in detail. The doped N atoms tend to bond with Ge to form Ge3N4, as proved by X-ray photoelectron spectroscopy analyses. X-ray diffraction patterns showed that both undoped and N-doped Ge15Sb85 films crystallize into a hexagonal phase very similar to Sb. The thickness reduction upon crystallization for undoped and N-doped Ge15Sb85 films is less than 5%. The crystalline resistivity, crystallization temperature, and thermal stability of amorphous state all increase after nitrogen doping, while the grain size decreases. By adding 7.0 at.% N into the Ge15Sb85 film, the crystalline resistivity increases twelve times and the crystallization temperature increases about 50 °C. The maximum temperature for 10-year retention of amorphous Ge15Sb85 film is estimated to be 147 °C and that of N-doped films is even higher, which will promise better data retention of phase-change random access memory especially in the high-temperature application.  相似文献   

20.
Using the111Cd-TDPAC (time differential perturbated angular correlation) method, the pressure dependence of the electric field gradient (EFG) in Sb and Sb1–x M x (M=ln, Zn, Ge, Pb, Cd, Sn) was investigated. The application of a phenomenological ansatz for the parametrisation of the pressure and temperature dependence of the EFG made it possible to combine temperature data gained in former studies [1], [2] with the pressure dependent data presented in this paper. The resulting pressure dependence of –2±0.2 MHz/kbar is shown to be independent of concentration and element of admixture. Results for the volume and explicit temperature dependence agree with existing information on the mixed system Sb1–x M x (M=ln, Zn, Ge, Pb, Cd, Sn); the investigation of the EFG in Sb1–x–y M x Pb y showed that the resulting EFG may be interpreted as the weighted sum of the individual contributions of the two metals.This paper is dedicated to Prof. Dr. W. Kreische on the occasion of his 60th aniversary on 02.02.1995  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号