首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Various temperature measurements have been carried out in microwave induced plasmas (MIP) generated with a surfatron and inductivcly coupled plasmas (ICP) both with argon and helium as plasma gas. Iron has been used for the determination of excitation temperature, and OH and N+2 for rotational temperatures. In the case of the Ar ICP, equilibrium is attained between the various temperatures (4500 K), as previously described. On the other hand, in the He ICP and the MIPs, iron provides the highest temperature (4500 K) but discrepancies are obtained with results from N+2 and OH. These two species show lower values, especially OH (2000 K).  相似文献   

2.
The gas‐phase reaction of monomethylhydrazine (CH3NH? NH2; MMH) with ozone was investigated in a flow tube at atmospheric pressure and a temperature of 295 ± 2 K using N2/O2 mixtures (3–30 vol% O2) as the carrier gas. Proton transfer reaction–mass spectrometry (PTR‐MS) and long‐path FT‐IR spectroscopy served as the main analytical techniques. The kinetics of the title reaction was investigated with a relative rate technique yielding kMMH+O3 = (4.3 ± 1.0) × 10?15 cm3 molecule?1 s?1. Methyldiazene (CH3N?NH; MeDia) has been identified as the main product in this reaction system as a result of PTR‐MS analysis. The reactivity of MeDia toward ozone was estimated relative to the reaction of MMH with ozone resulting in kMeDia+O3 = (2.7 ± 1.6) × 10?15 cm3 molecule?1 s?1. OH radicals were followed indirectly by phenol formation from the reaction of OH radicals with benzene. Increasing OH radical yields with increasing MMH conversion have been observed pointing to the importance of secondary processes for OH radical generation. Generally, the detected OH radical yields were definitely smaller than thought so far. The results of this study do not support the mechanism of OH radical formation from the reaction of MMH with ozone as proposed in the literature.  相似文献   

3.

Reactive species generated in the gas and in water by cold air plasma of the transient spark discharge in various N2/O2 gas mixtures (including pure N2 and pure O2) have been examined. The discharge was operated without/with circulated water driven down the inclined grounded electrode. Without water, NO and NO2 are typically produced with maximum concentrations at 50% O2. N2O was also present for low O2 contents (up to 20%), while O3 was generated only in pure O2. With water, gaseous NO and NO2 concentrations were lower, N2O was completely suppressed and HNO2 increased; and O3 was lowered in O2 gas. All species production decreased with the gas flow rate increasing from 0.5 to 2.2 L/min. Liquid phase species (H2O2, NO2 ̄, NO3 ̄, ·OH) were detected in plasma treated water. H2O2 reached the highest concentrations in pure N2 and O2. On the other hand, nitrites NO2 ̄ and nitrates NO3 ̄ peaked between 20 and 80% O2 and were associated with pH reduction. The concentrations of all species increased with the plasma treatment time. Aqueous ·OH radicals were analyzed by terephthalic acid fluorescence and their concentration correlated with H2O2. The antibacterial efficacy of the transient spark on bacteria in water increased with water treatment time and was found the strongest in the air-like mixture thanks to the peroxynitrite formation. Yet, significant antibacterial effects were found even in pure N2 and in pure O2 most likely due to high ·OH radical concentrations. Controlling the N2/O2 ratio in the gas mixture, gas flow rate, and water treatment time enables tuning the antibacterial efficacy.

  相似文献   

4.
We measured the densities of NH and NH(2) radicals by cavity ring-down spectroscopy in N(2)-H(2) plasmas expanding from a remote thermal plasma source and in N(2) plasmas to which H(2) was added in the background. The NH radical was observed via transitions in the (0,0), (1,1), and (2,2) vibrational bands of the A(3)Pi <-- X(3)Sigma- electronic transition and the NH(2) radical via transitions in the (0,9,0) <-- (0,0,0) band of the A(2)A(1) <-- X(2)B(1) electronic transition. The measurements revealed typical densities of 5 x 10(18) m(-3) for the NH radical in both plasmas and up to 7 x 10(18) m(-3) for the NH(2) radical when N(2) and H(2) are both fed through the plasma source. In N(2) plasma with H(2) injected in the background, no NH(2) was detected, indicating that the density is below our detection limit of 3 x 1016 m-3. The error in the measured densities is estimated to be around 20%. From the trends of the NH(x) radicals as a function of the relative H(2) flow to the total N(2) and H(2) flow at several positions in the expanding plasma beam, the key reactions for the formation of NH and NH(2) have been determined. The NH radicals are mainly produced via the reaction of N atoms emitted by the plasma source with H(2) molecules with a minor contribution from the reaction of N+ with H(2). The NH(2) radicals are formed by reactions of NH(3) molecules, produced at the walls of the plasma reactor, and H atoms emitted by the plasma source. The NH radicals can also be produced by H abstraction of NH(2) radicals. The flux densities of the NH(x) radicals with respect to the atomic radicals are appreciable in the first part of the expansion. Further downstream the NH(x) radicals are dissociated, and their densities become smaller than those of the atomic radicals. It is concluded that the NH(x) radicals play an important role as precursors for the N and H atoms, which are key to the surface production of N(2), H(2), and NH(3) molecules.  相似文献   

5.
A new method is proposed to remove the spectral interference on elements in atomic fluorescence spectrometry by quenching of the molecular emission of the OH radical (A2Σ+ → X2Π) and N2 second positive system (C3Πu → B3Σg) in the background spectrum of medium power Ar plasmas. The experiments were carried out in a radiofrequency capacitively coupled plasma (275 W, 27.12 MHz) by CH4 addition. The quenching is the result of the high affinity of OH radical for a hydrogen atom from the CH4 molecule and the collisions of the second kind between nitrogen excited molecules and CH4, respectively. The decrease of the emission of N2 second positive system in the presence of CH4 is also the result of the deactivation of the metastable argon atoms that could excite the nitrogen molecules. For flow rates of 0.7 l min− 1 Ar with addition of 7.5 ml min− 1 CH4, the molecular emission of OH and N2 was completely removed from the plasma jet spectrum at viewing heights above 60 mm. The molecular emission associated to CH and CH2 species was not observed in the emission spectrum of Ar/CH4 plasma in the ultraviolet range. The method was experimented for the determination of Pb at 283.31 nm by atomic fluorescence spectrometry with electrodeless discharge lamp and a multichannel microspectrometer. The detection limit was 35 ng ml− 1, 2–3 times better than in atomic emission spectrometry using the same plasma source, and similar to that in hollow cathode lamp microwave plasma torch atomic fluorescence spectrometry.  相似文献   

6.
The details of reaction mechanism of imidogen (NH) and hydroxyl radicals are explored at the UMP2(FC)/cc–pVDZ and PMP4(FC,SDTQ)/cc–pVQZ//UMP2 + ZPE levels, theoretically. The initial association between NH and OH radicals leads to the formation of the intermediates, NH…OH, HN…HO, cis HNOH, and trans HNOH, through the barrierless and exothermic processes. By starting from the initial intermediates, all possible paths for the formation of H + HNO, H2 + NO, H2O + 4N, H2N + 3O, and H + 3HON products are investigated on potential energy surface. The results reveal that H2O + 4N is the main product involved in the mechanism of hydrogen atom abstraction of NH by OH radical through the intermediate NH…OH.  相似文献   

7.
The objective of this research effort is to develop a more comprehensive understanding of how molecules get degraded in plasma during an electrical discharge in water. The study correlates the intensity of hydroxyl (OH) radicals in the plasma and physicochemical properties of aqueous solutions of methanol, ethanol, acetonitrile, acetone, dimethyl sulfoxide (DMSO), dimethyl formamide (DMF), phenol, hydroquinone, caffeine, and bisphenol A (BPA). To determine the tendency of the used compounds to penetrate the plasma, their vapor pressures, Henry’s constants, aqueous solubilities, reaction rate constants with OH radicals, and octanol–water partition coefficients are compared and correlated with plasma spectroscopic and hydrogen peroxide (H2O2) measurements. OH radicals are precursors to the formation of hydrogen peroxide and any compound that diffuses into the plasma will react with and lower the intensity of OH radicals and therefore the concentration of hydrogen peroxide in the bulk liquid. Optical emission spectroscopy (OES) reveals that all the used compounds diffuse inside the plasma channel regardless of their vapor pressure where they get oxidized (primarily by OH radicals) and thermally degraded. Results also indicate that hydrophobicity (i.e., octanol–water partition coefficient) is the most important property that determines a compound’s tendency to diffuse inside the plasma channel; hydrophobic compounds readily penetrate the plasma whereas hydrophilic compounds tend to stay in the bulk liquid. The rate of formation of hydrogen peroxide is independent of the type of the compound present in the bulk liquid which confirms that this molecule is formed at the plasma interface.  相似文献   

8.
A comparative study of a 600 W capacitively coupled microwave plasma (CMP) operated with different plasma gases (Ar, N2 and air) with respect to the achieved detection limits for Fe, Cr, Zn, Ca and Mg have been carried out. Radially and axially resolved rotational temperatures (Trot), excitation temperatures (Texc) and electron number densities (ne) of these plasmas have been determined using OH (Trot), Fe (Texc) and Mg (ne) as thermometric species. The influence of different gas flow rates on Trot, Texc and ne, and of Li as an easily ionized element on Texc has been investigated.  相似文献   

9.
Microwave chemistry is a green chemical method that improves reaction conditions and product yields while reducing solvent amounts and reaction times. The main aim of this article is to synthesize the tetradentate N2O2 ligand [HO(Ar)CH=N–(CH2)2–N=CH(Ar)OH] and manganese(II), cobalt(II), nickel(II), and zinc(II) complexes of the type ML by classical and microwave techniques. The resulting Schiff base and its complexes are characterized by 1H NMR, infrared, elemental analysis, and electronic spectral data. The ligand and its Co(II) and Mn(II) complexes were further identified by X-ray diffraction and mass spectra to confirm the structure. The results suggest that the metal is bonded to the ligand through the phenolic oxygen and the imino nitrogen.  相似文献   

10.

In this paper, a three-level coupled rotating electrodes air plasma at atmospheric pressure is developed for evaluation of nitrogen fixation. Factors influencing the NOx production rate and energy cost, including airflow rate, the input H2O concentration, blade numbers at each rotating electrode and rotating speed, are examined. Air flow rates prove to have no effect on the rotational temperature of N2 337.1 nm and the emission intensities of N2+ and N2, but specific energy input (SEI) and species’ residence time can be shorter with higher air flow rates, resulting in lower NOx concentration and energy cost. The addition of H2O also has a positive effect on both NOx concentration and energy cost. Optical emission spectrum (OES) shows that air?+?H2O plasma has stronger 336 nm (NH) and 309 nm (OH) emission lines than air plasma, suggests NH and OH are the key species in NOx enhancement. The most energy efficient conditions are found at airflow rate of 15 l min?1, 12% H2O concentration, with 4 blades on each rotating speed. Under these conditions, the lowest energy cost is observed to be 165 GJ/tN.

  相似文献   

11.
Visible‐light‐driven plasmonic photocatalyst Ag‐TiO2 nanocomposite hollow spheres are prepared by a template‐free chemically‐induced self‐transformation strategy under microwave‐hydrothermal conditions, followed by a photochemical reduction process under xenon lamp irradiation. The prepared samples are characterized by using scanning electron microscopy, transmission electron microscopy, X‐ray diffraction, N2 adsorption‐desorption isotherms, X‐ray photoelectron spectroscopy, UV/Vis and Raman spectroscopy. Production of ?OH radicals on the surface of visible‐light illuminated TiO2 was detected by using a photoluminescence method with terephthalic acid as the probe molecule. The photocatalytic activity of as‐prepared samples was evaluated by photocatalytic decolorization of Rhodamine B (RhB) aqueous solution at ambient temperature under visible‐light irradiation. The results show that the surface plasmon absorption band of the silver nanoparticles supported on the TiO2 hollow spheres was red shifted, and a strong surface enhanced Raman scattering effect for the Ag‐TiO2 nanocomposite sample was observed. The prepared nanocomposite hollow spheres exhibits a highly visible‐light photocatalytic activity for photocatalytic degradation of RhB in water, and their photocatalytic activity is higher than that of pure TiO2 and commercial Degussa P25 (P25) powders. Especially, the as‐prepared Ag‐TiO2 nanocomposite hollow spheres at the nominal atomic ratio of silver to titanium ( R ) of 2 showed the highest photocatalytic activity, which exceeds that of P25 by a factor of more than 2.  相似文献   

12.
The deposition of GaN thin films in a nitrogen–hydrogen microwave plasma using Ga(CH 3 ) 3 as a gallium precursor was investigated. The deposit was identified as stoichiometric GaN by XPS and XRD. The substrate was dielectrically heated in the microwave discharge and the substrate temperature was lower than that in usual thermal MOCVD. The NH radicals, which were the primary N-atoms precursors, and fragments of Ga(CH 3 ) 3 were identified in the plasma by OES. The NH radical formation and the decomposition of Ga(CH 3 ) 3 in the plasma may be one of the reasons for the lower deposition temperature of GaN. The position dependence of the substrate temperature showed similar tendency as the position dependence of the electron temperature. The plasma state contributes to the deposition of GaN thin films. The deposited GaN exhibited a wide optical band gap of 3.4eV. Material highly oriented along the c axis was detected in the deposit, and a PL spectrum which has the band head at about 450 mm was obtained.  相似文献   

13.
Nitrogen, oxygen, and carbon atoms have been detected by optical emission spectroscopy in a common flowing post-discharge of an Ar-x CH4 rf plasma torch and an Ar-2%N2 microwave discharge. Gas temperature as determined from CN and N2 rotational svstems is 3200 ± 200 K in the rf torch and 700 ± 100 K in the post-discharge at a time 3 X10–2 s after the rf plasma torch. From the intensities of the N2 1st positive system, of NO, and of CN violet hands, the atom densities have been determined as 2 X 1016 cm3 for N, 1015 cm3 for O, and 6 X 1012 cm3 for C in the post-discharge at p=650 torr, with 103 of CH4 in the Ar torch.  相似文献   

14.
With the aim of introducing primary amino groups on the surface of poly(ethylene terephthalate) (PET), two methods were compared—the use of ammonia or a combination of nitrogen and hydrogen low-pressure microwave plasma. Several plasma parameters were optimized on the reactor to increase the –NH2 surface density, which was estimated by colorimetric titration and X-ray photoelectron spectroscopy (XPS). These techniques show that whatever the plasma treatment, almost 2 –NH2/nm2 are incorporated on PET films. Emission spectroscopy highlighted a correlation between the density of primary amino groups and the ratio between an NH peak intensity and an Ar peak intensity (INH/IAr). Variation in surface hydrophilicity with aging in air after plasma treatment was monitored with contact angle measurements and showed a hydrophobic recovery. This was confirmed by XPS, which suggests also that surfaces treated by NH3 plasma are more stable than surfaces treated by N2/H2.  相似文献   

15.
In this study, hydrogen production from water splitting in N2 using an atmospheric pressure rotating gliding arc plasma was investigated. The effect of input H2O concentration and total flow rate on the performance of the plasma water splitting process (e.g., H2 and O2 yield, H2 production rate, and energy yield of H2) was investigated. N2 showed a pronouncedly facilitating effect on the H2O splitting and H2 production process due to the reactions of the excited N2 species [e.g., electronically excited metastable N2(A)] with the H2O molecules. The maximum H2 production rate reached up to 41.3 μmols?1, which is much higher than that of other typical non-thermal plasmas (e.g., ~0.2 μmols?1 for a dielectric barrier discharge). Optical emission diagnostics has shown that in addition to the NO, N2, and N2 + that were observed in the pure N2 spectra, strong OH and NH emission lines also appeared in the H2O/N2 spectra. OH radical is considered as a key intermediate species that could contribute to the formation of H2, O2, and H2O2. The increase of the H2O concentration could lead to a continuous enhancement of the OH intensity. The rotational temperature of N2 + dropped drastically from 2875 ± 125 to 1725 ± 25 K with the addition of 1 % (mol/mol) H2O into the N2 plasma.  相似文献   

16.
Poly(ethylene terephthalate) (PET) film surfaces were modified by argon (Ar), oxygen (O2), hydrogen (H2), nitrogen (N2), and ammonia (NH3) plasmas, and the plasma‐modified PET surfaces were investigated with scanning probe microscopy, contact‐angle measurements, and X‐ray photoelectron spectroscopy to characterize the surfaces. The exposure of the PET film surfaces to the plasmas led to the etching process on the surfaces and to changes in the topography of the surfaces. The etching rate and surface roughness were closely related to what kind of plasma was used and how high the radio frequency (RF) power was that was input into the plasmas. The etching rate was in the order of O2 plasma > H2 plasma > N2 plasma > Ar plasma > NH3 plasma, and the surface roughness was in the order of NH3 plasma > N2 plasma > H2 plasma > Ar plasma > O2 plasma. Heavy etching reactions did not always lead to large increases in the surface roughness. The plasmas also led to changes in the surface properties of the PET surfaces from hydrophobic to hydrophilic; and the contact angle of water on the surfaces decreased. Modification reactions occurring on the PET surfaces depended on what plasma had been used for the modification. The O2, Ar, H2, and N2 plasmas modified mainly CH2 or phenyl rings rather than ester groups in the PET polymer chains to form C? O groups. On the other hand, the NH3 plasma modified ester groups to form C? O groups. Aging effects of the plasma‐modified PET film surfaces continued as long as 15 days after the modification was finished. The aging effects were related to the movement of C?O groups in ester residues toward the topmost layer and to the movement of C? O groups away from the topmost layer. Such movement of the C?O groups could occur within at least 3 nm from the surface. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3727–3740, 2004  相似文献   

17.
Analysis of the plasma emission from a low-pressure microwave cavity discharge through flowing hydrogen peroxide vapor showed that both H and OH were produced in proportions which varied with the applied power. When the dissociated vapor was condensed at 195 K only water was obtained; at 77 K, H2O2 and H2O4 were also obtained. Their formation could not be increased by increasing the H atom or OH radical concentration in the plasma. When the reaction time of the dissociated vapor between the plasma exit and the cold surface was increased, the rate of H2O2 formation increased mostly at the expense of water formation. It appears that, as in the case of the reaction of H with O2, the rate of H2O2 formation is dependent on the concentration of O2 produced in the spatial afterglow by the gas-phase reactions of the hydroxyl radicals.  相似文献   

18.
CCl2 free radicals were produced by a pulsed dc discharge of CCl4 in Ar. Ground electronic state CCl2(X) radicals were electronically excited to the A1B1 (0,4,0) vibronic state with an Nd:YAG laser pumped dye laser at 541.52 nm. Experimental quenching data of excited CCl2(A1B1 and a3B1) by O2, N2, NO, N2O, NH3, NH(CH3)2, NH(C2H5)2, and N(C2H5)3 molecules were obtained by observing the time‐resolved total fluorescence signal of the excited CCl2 radical in a cell, which showed a superposition of two exponential decay components under the presence of quencher. The quenching rate constants kA of CCl2(A) state and ka of CCl2(a) state were derived by analyzing the experimental data according to a proposed three‐level model to deal with the CCl2(X1A1, A1B1, a3B1) system. The formation cross sections of complexes of electronically excited CCl2 radicals with O2, N2, NO, N2O, NH3, and aminated molecules were calculated by means of a collision‐complex model. © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 34: 351–356, 2002  相似文献   

19.
Pulsed arc electrohydraulic discharge (PAED) direct plasma technique was applied for various types of contaminated water treatment. The experimental system consists of a spark-gap switch type pulse power supply (0.5 kJ/pulse) and a 3 L stainless steel reactor with eccentrically configured rod-to-rod electrodes. The current and voltage waveforms are fundamentally different for different conductivity water. Double pulse current discharges were observed for pond water with relatively higher conductivity (637 mS/m) while a single pulse current discharge was observed for lake water with relatively lower conductivity (78 mS/m). From the optical emission spectrum and UV dosimeters, UV-A, UV-B, excited molecules and radicals including N2*, O, H, OH, O3 etc. were observed during the discharge period. Both optical emission and UV intensities in pond water are slightly lower than lake water. The decay time of the UV-A, N2*, OH, H and O radicals were around 0.6 ms, where the discharge period ended around 0.4 ms. The results indicate that the radicals existed longer than the discharge period. The pH, dissolved oxygen and conductivity were changed during the course of PAED treatment. The ions and radicals such as H·, O·, H+, OH· etc. generated by PAED may cause alterations density decay time and the active species in water were present for a longer period. The reduction of total organic carbon (TOC) in pond water reached 80% after 5 min of PAED treatment. Based on local thermal plasma equilibrium (LTE) model, LTE thermal plasma chemical composition model for 1 mol water vapour was used to compare to present experiments. PAED discharge in contaminated pond water generated peak concentration of OH = 28% and O2H = 0.012% mol in gas-phase and migrated to water-phase via gas–liquid interfaces generated by arc and micro-bubbles to form more stable O3, H2O2, H2 and O2. The model suggested that the reduction of TOC occurred in gas/plasma phases or liquid-phase side of gas liquid interfaces.  相似文献   

20.
Abstract

1) Cyclic inorganic sulfur imides, S7NH, S6(NH)2 1.3 S5(NH)31.3.5 and S4(NH)41.3.5.7. in solution in polar solvents (acetone, acetonitrile, etc.) release the radicals S7N-, S6N2 2- and S5N3- under the action of alkali. Their study by near UV spectroscopy reveals unstable radicals which rapidly pass into the more stable S4N- radical. The latter in turn gives, by charge transfer with the solvent (acetone), the blue complex [S4N–OC(CH3)2]. Non polar solvents (CCl4) do not give this charge transfer complex (C.T.C.).

2) The sulfur imides mentioned above react with a solution of S8 to give, via hydrogen bonds, crystalline C.T.C's of formula [3 S8–S7NH.] or [2 S8–S6(NH)21.3]. X-ray examination reveals that these complexes are isotypes of the sulfurs S8β and S 8γ whose crystals are stabilized by intermolecular hydrogen bonds.

3) The reaction of the sulfur imides with formic aldehyde gives primary cyclic polyalcohols, such as S5(N-CH2OH)3 or S4(N-CH2OH)4, which form typical molecular cages through intramolecular hydrogen bonds.

4) Examination of Van der Waals bonds of the crystallized sulfur imides enables their comparison with molecules of these compounds containing other types of bonds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号