首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Pd@SnO2 and SnO2@Pd core@shell nanocomposites are prepared via a microemulsion approach. Both nanocomposites exhibit high‐surface, porous matrices of SnO2 shells (>150 m2 g?1) with very small SnO2 crystallites (<10 nm) and palladium (Pd) nanoparticles (<10 nm) that are uniformly distributed in the porous SnO2 matrix. Although similar by first sight, Pd@SnO2 and SnO2@Pd are significantly different in view of their structure with Pd inside or outside the SnO2 shell and in view of their sensor performance. As SMOX‐based sensors (SMOX: semiconducting metal oxide), both nanocomposites show a very good sensor performance for the detection of CO and H2. Especially, the Pd@SnO2 core@shell nanocomposite is unique and shows a fast response time (τ90 < 30 s) and a very good response at low temperature (<250 °C), especially under humid‐air conditions. Extraordinarily high sensor signals are observed when exposing the Pd@SnO2 nanocomposite to CO in humid air. Under these conditions, even commercial sensors (Figaro TGS 2442, Applied Sensor MLC, E2V MICS 5521) are outperformed.  相似文献   

2.
A rutile TiO2 (α-TiO2) and hexagonal wurtzite ZnO nanocomposite was directly and synchronously synthesized via arc discharge method submerged in de-ionized water. In correlation with the detailed characterization of the morphology, and crystalline structure of the prepared ZnO–TiO2 nanocomposites, the UV–visible and photoluminescence properties were studied. X-ray diffraction and transmission electron microscopy investigations revealed the co-existence of α-TiO2 and hexagonal wurtzite ZnO phases with the ZnO and α-TiO2 nanoparticles are in nanorod and nanospheres morphologies, respectively. The diameters of the synthesized nanocomposite particles are in the range of 5–70 nm. Interestingly, the as-prepared ZnO–TiO2 nanocomposite shows better photocatalytic activity for photodegradation of the methylene blue dye than both of pure ZnO and TiO2 nanocatalyts. This work would explore feasible routes to synthesize efficient metal or/and metal oxide nanocomposites for degrading organic pollutants, gas sensing or other related applications.  相似文献   

3.
Novel titanium oxide (TiO2) nanoparticles were fabricated via a modified propanol drying step. These nanoparticles were loaded with anti-cancer drug paclitaxel (PTX) to yield PTX-TiO2 nanocomposites. The nanocomposites were characterized for their size and surface morphology employing nanoparticle tracking analysis (NTA) and scanning electron microscopy (SEM). The SEM images showed spherical particles with smooth surface and narrow size distribution of ~30–40 nm, which was also supported by NTA analysis data. The drug loading efficiency of the air-dried nanoparticles was observed to be ~63.61 % while those prepared through propanol-induced drying step showed ~69.70 %, thereby demonstrating higher efficiency of the latter. In vitro pH-dependent release of the loaded PTX was observed with higher release at acidic pH compared with physiological pH. Cell uptake studies suggested of time-dependent internalization of nanocomposites with significant improvement in uptake by increasing incubation time from 2 to 24 h, as evidenced by flow cytometry. Further, the cell viability as a measure of anti-cancer activity revealed that cell viability upon exposure to PTX only was 40.5 % while that of PTX-TiO2 nanocomposite showed 21.6 % viability after 24 h, suggesting better anti-cancer efficacy of nanocomposites. Apoptosis studies revealed that cells treated with PTX-TiO2 nanocomposites possessed more amount of apoptotic bodies as compared to those treated with PTX only.  相似文献   

4.
Bulk nanocomposites ZnO–SnO2–TiO2 were synthesized by solid-state reaction method. The X-ray diffraction patterns and Raman spectra of bulk nanocomposite as a function of sintering temperature (700 °C–1300 °C) indicate that the structural phases of SnO2 and TiO2 depend on the sintering temperature while the ZnO retains its hexagonal wurtzite phase at all sintering temperatures and SnO2 started to transform into SnO at 900 °C and completely converted into SnO at 1100 °C, whereas the titanium dioxide (TiO2) exhibits its most stable phase such as rutile at low sintering temperature (≤900°C) and it transforms partially into brookite phase at high sintering temperature (≥ 900 °C). The optical band gap of nanocomposite ZnO–SnO2–TiO2 sintered at 700 °C, 900 °C, 1100 °C and 1300 °C for 16 hours is calculated using the transformed diffuse reflectance ultra violet visible near infra red (UV–VisNIR) spectra and has been found to be 3.28, 3.29, 3.31 and 3.32 eV, respectively.  相似文献   

5.
Junsheng Zhu  Dianlong Wang  Lin Wang 《Ionics》2013,19(9):1223-1228
SnO2–graphene nanocomposites (SnO2–GNS) have been prepared through a simple hydrothermal reaction with SnS–graphene oxide composites as the precursor. The composite material as prepared was characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, Brunauer–Emmett–Teller analysis, and thermogravimetric analysis. The results indicate that SnO2 nanoparticles possess a good dispersion on the surface of graphene. Electrochemical tests demonstrate the high reversible lithium ion storage properties of SnO2–GNS. The nanocomposites retained a reversible capacity of 503 mAh?g?1 after 40 cycles. Moreover, the composite material exhibited higher capacity and better cyclic performance compared to free SnO2 nanoparticles physically mixed with graphene in the relative weight ratio. The results suggest that the combination of SnO2 and graphene leads to synergistic performance, which enhances lithium ion storage properties of the overall system.  相似文献   

6.
Nanoparticles of TiO2 and SnO2 were obtained by laser ablation of Ti and Sn targets in both deionized water and sodium dodecyl sulfate (SDS) solutions. The crystallinity of the nanoparticles strongly depended on the SDS concentration in the solution. Well-crystallized oxide nanoparticles were most abundantly fabricated in SDS solution with around the critical micelle concentration. An inorganic/organic layered nanocomposite consisting of a zinc hydroxide layer and a SDS lamellar interlayer was obtained by the ablation of Zn in SDS solutions. The oxide and/or hydroxide can be formed by the rapid reactive quenching with water in the liquid–plasma interface, where ablated species can be oxidized by aqueous oxidation. The surfactant in the liquid medium could affect the aggregation and growth of nuclei after the oxidation. The preparation of Pt/TiO2 nanocomposite particles by PLA of the bi-combinant target of Pt and TiO2 is also reported. PACS 81.16.Mk; 81.10.Dn; 81.07.Bc  相似文献   

7.
Platinum nanoparticles supported on physical mixtures of Vulcan carbon and TiO2 (Pt/(C?+?TiO2)) were prepared by the borohydride method and tested for methanol electro-oxidation in alkaline media. X-ray diffraction (XRD) analyses showed peaks characteristic of Pt face-centered cubic (fcc) structure and peaks associated with TiO2 and carbon. Transmission electron microscopy (TEM) images showed the Pt nanoparticles distributed preferentially over the TiO2 support with average particle sizes between 5 and 6 nm. Cyclic voltammograms showed a decrease of Pt surface area with increasing TiO2 load while linear sweep in the presence of methanol showed Pt/(C?+?TiO2) (60:40) with the highest current density in accordance with chronoamperometry. The results were attributed to Pt-based nanoparticles on TiO2 which show enhanced catalytic activities for methanol oxidation due to a metal-support interaction. Furthermore, TiO2 is a semiconductor with low conductivity when compared to carbon. Thus, it is expected that an intermediate proportion of carbon and TiO2 as substrate could improve the activity of Pt nanoparticles without substantial loss of conductivity, resulting in a synergic effect.  相似文献   

8.
Present paper reports the synthesis of SnO2–TiO2 nanocomposite, its characterization and performance as opto-electronic humidity sensor. Nanocrystalline SnO2–TiO2 film was deposited on the base of an equilateral prism using a photo resist spinner and the as prepared film was annealed at 200 °C for 2 h. The crystal structure of the prepared film was investigated using X-ray diffraction (XRD). Minimum crystallite size of the material was found 7 nm. Surface morphology of the film was investigated by Scanning electron microscope (SEM LEO-0430, Cambridge). SEM image shows that the film is porous. Differential scanning calorimetry (DSC) of as synthesized material shows two exothermic peaks at about 40 and 110 °C, respectively which are due to the evaporation of chemical impurities and water. Further the prepared film was investigated through the exposure of humidity and relative humidity (%RH) was measured directly in terms of modulation in the intensity of light recorded on a digital power meter. The maximum sensitivity of sensor was found 4.14 μW/%RH, which is quite significant for sensor fabrication purposes.  相似文献   

9.
We report on the linear and nonlinear optical studies of TiO2–CeO2 nanocomposites. It was found that the band gap of the nanocomposite can be tuned by varying Ce/Ti content. Nonlinear absorption characteristics of these samples were studied by employing open aperture Z-scan technique using an Nd:YAG laser (532 nm, 7 ns, 10 Hz). It has been observed that as the CeO2 amount increases, band gap of the nanocomposites decreases and the reason proposed for the change in band gap is the smudging of localised states of Ce3+ into the forbidden energy gap, thus acting as the intermediate state. Fluorescence studies confirmed the above argument. Nonlinear investigation revealed that with increase in the CeO2 amount, the two-photon absorption coefficient increased due to the modification of TiO2 dipole symmetry. Suitable candidature of the nanocomposites for the fabrication of nonlinear optical devices was proved by determining the optical limiting threshold.  相似文献   

10.
A sensor for the highly sensitive determination of Sudan I based on the amplified electrochemical response of mesoporous TiO2-decorated graphene (GN–TiO2) was fabricated. The nanoparticles of TiO2 arrayed densely and uniformly on the GN sheets, as confirmed by field emission scanning electron microscopy and transmission electron microscopy images. The electrochemical behavior of Sudan I at this sensor was studied in detail, showing that this sensor exhibited electrocatalytic activity for the oxidation of Sudan I because of the significant peak current enhancement and the lowering of oxidation overpotential. Furthermore, the experimental parameters including supporting electrolyte, volume of GN–TiO2 suspension on electrode surface, accumulation potential, and time were optimized and the electrochemical reaction mechanism of Sudan I on this sensor was investigated. The linear range is from 3.3 nM to 0.66 μM, and the limit of detection is estimated to be 0.60 nM. At last, the sensor was used to determine Sudan I in food sample extracts, which are in good agreement with the results obtained by chromatographic method.  相似文献   

11.
In this letter, SnO2/polyvinylidene fluoride (PVDF) nanocomposites with outstanding dielectric properties were fabricated. The SEM and TEM images showed that SnO2 nanoparticles with size of 5–7 nm dispersed homogeneously in polymer matrix. The significantly improved dielectric constant was well explained by percolation theory. The nanocompo‐ sites can retain a certain value of breakdown field. The maximum energy density of SnO2/PVDF nanocomposites was 5.4 J/cm3, two times that of the pure polyvinylidene fluoride. These findings suggest that SnO2/PVDF nanocomposites are suitable candidates for energy storage applications. (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

12.
One of the greatest challenges in preparing TiO2-based oxygen electrodes for PEM fuel cells is increasing the electrical catalytic activity of Pt nanoparticle/TiO2 composites by improving the dispersion of Pt. This article describes a new way for improving the dispersion of Pt nanoparticles by depositing them on TiO2 fibers and using microwave irradiation. The Pt nanoparticles used in this experiment is about 5 nm in diameter and the diameter of TiO2 fibers could be controlled ranging from 30 to 60 nm and Pt nanoparticles still keep their size when the deposition amount is increased on the surface of TiO2 fibers. The Pt nanoparticles were highly dispersed without agglomeration even at a weight percentage of composites as high as 40%. The position of Pt nanoparticles located in the fiber and the composition of Pt/TiO2, which had great influence on the electric conductivity and electrical catalytic activity of the composite, could be easily controlled.  相似文献   

13.
In this work, Fe2TiO5 nanoparticles were used for improving the proton conductivity, and water and acid uptake of polybenzimidazole (PBI)-based proton exchange membranes. The nanocomposite membranes have been prepared using different amounts of Fe2TiO5 nanoparticles and dispersed into a PBI membrane with the solution-casting method. The prepared membranes were then physico-chemically and electrochemically characterized for use as electrolytes in high-temperature PEMFCs. The PBI/Fe2TiO5 membranes (PFT) showed a higher acid uptake and proton conductivity compared with the pure PBI membranes. The highest acid uptake (156 %) and proton conductivity (78 mS/cm at 180 °C) were observed for the PBI nanocomposite membranes containing 4 wt% of Fe2TiO5 nanoparticles (PFT4). The PFT4 composite membrane showed 380 mW/cm2 power density and 760 mA/cm2 current density in 0.5 V at 180 °C at dry condition. The above results indicated that the PFT4 nanocomposite membranes could be utilized as proton exchange membranes for high-temperature fuel cells.  相似文献   

14.
MoO3 clusters-coated TiO2 nanotubes were synthesized wet-chemically and characterized by measuring photoluminescence spectra and kinetic profiles as well as extinction spectra and electron microscope images. TiO2 nanotubes having an average outer diameter of 30 nm and an average thickness of 8 nm are surrounded by MoO3 clusters with an average thickness of 4 nm. The excitation of both the TiO2 cores and the MoO3 shells of the type-II nanocomposites suspended in water yields charge-transferred junction photoluminescence having a long lifetime of 2.3 ns at 460 nm.  相似文献   

15.
The properties of TiO2/polyamide 6 (PA6) and ZnO/PA6 nanocomposite filament yarns produced on a pilot-plant melt spinning machine were compared. Concentrated masterbatches were prepared using a twin screw extruder. Then continuous multifilament yarns were produced by blending nylon 6 chips and various amounts of the prepared masterbatches. Melt spinning was carried out at the spinning temperature of 265°C and take-up speed of 4000 m/min. As-spun multifilament yarns were then drawn and textured. Morphological properties of the produced yarns were studied. Thermal behavior and physical properties, including shrinkage and tensile properties, were measured. Weft-knitted fabrics were evaluated for their ultraviolet protection properties. Although both kinds of the nanoparticles had a positive effect on the ultraviolet protection properties of their nanocomposite fabrics as compared to pure PA6 fabric, the efficiency of the TiO2 nanoparticles was more than that of the ZnO ones for the same concentrations. The differences between the different properties of the two kinds of nanocomposites are discussed based on their interaction with the polymeric matrix, specific surface area, steric hindrance effect, and band gap energies.  相似文献   

16.
Tao Sun  Jiayu Yu  Qi Yang  Jinxin Ma 《Ionics》2017,23(5):1059-1066
Cu-supported SnO2@C composite coatings constructed by interconnected carbon-based porous branches were fabricated by annealing Cu foils with films formed by knife coating DMF solution containing SnCl2, polyacrylonitrile (PAN), and poly(methyl methacrylate) (PMMA) on their surface in vacuum. The carbon-based porous branches consist of amorphous carbon matrices, SnO2 nanoparticles with a size of 30–100 nm mainly encapsulated inside, and many micropores with a size of 1–5 nm. The three-dimensional (3D) porous network structures of the SnO2@C composite were achieved by volatilization of PMMA and pyrolysis of SnCl2. The SnO2@C composite coatings demonstrate good cyclic performance with a high reversible capacity of 642 mA h g?1 after 100 cycles at a current density of 50 mA g?1 without apparent capacity fading during cycling and excellent rate performance with a capacity of 276 mA h g?1 at a high current density up to 10 A g?1.  相似文献   

17.
So far, little is known about the experimental potential of graphene nanoribbon-carbon nanotube (GNR-CNT) heterostructure as a semiconductor nanocomposite. The present work examined the structural features, topography and electronic properties of GNR-CNT nanocomposite by using Raman spectroscopy, transmission electron microscopy, scanning tunneling microscopy and spectroscopy (STS). The homogenous semiconductor GNR-CNT nanocomposites were produced under optimized synthesis conditions. The narrow band gap was exhibited by optimization of the reduction step. The STS of the micro-scale surface of the nanocomposite shows local density of state in selected areas that represent the 0.08 eV band gap of a homogenous nanocomposite. The potential of the semiconductor nanocomposite was considered for application in stacked graphene nanoribbon-field effect transistors (SGNR-FETs). A simple method of device fabrication is proposed based on a semiconductor stacked GNR nanocomposite. The high hole mobility and rectifying effect of the p–n junction of the SGNR nanocomposite on TiO2 are demonstrated. The optimal thickness for the back gate TiO2 dielectric for the tested devices was 40 nm. This thickness decreased leakage current at the p–n junction of the SGNR/TiO2 interface, which is promising heterojunction for optoelectronics. The thickness of gate dielectric and quantum capacitance of the gate was investigated at the low 40 nm thickness by calculating the mobility. In the proposed SGNR-FET, holes dominate electrical transport with a high mobility of about 1030 cm2/V s.  相似文献   

18.
In this paper, transparent thin films of nano titania filled Poly(methyl methacrylate) (PMMA) composites were synthesized by solvent casting method using tetra hydro furan as a solvent, with in situ nonaqueous ‘sol-gel’ transformation involving the mixing of titanium isopropoxide (as sol-gel precursor) and methanol. The present research work is focused at studying the effect of titania loading on optical and mechanical behavior of transparent nano hybrid thin films. The effect of nano Titanium dioxide (TiO2) loading on PMMA morphology was studied by using a scanning electron microscope (SEM). Bowl shaped structures were obtained in pure PMMA thin film, which were deformed on incorporation of TiO2 nanoparticles. This nanocomposite exhibits enhanced optical and mechanical properties. The peak of UV absorption is blue shifted to 261 and 266?nm with the incorporation of TiO2. At this wavelength, the absorption is increased up to approximately 397%. The nanocomposites exhibit increased tensile strength up to 40% and modulus up to 16%. Tg of PMMA increased from 84.8 to 86.7?°C on adding 1.25% TiO2 nanoparticles.  相似文献   

19.
SnO2-impregnated zeolite composites were used as gas-sensing materials to improve the sensitivity and selectivity of the metal oxide-based resistive-type gas sensors. Nanocrystalline MFI type zeolite (ZSM-5) was prepared by hydrothermal synthesis. Highly dispersive SnO2 nanoparticles were then successfully assembled on the surface of the ZSM-5 nanoparticles by using the impregnation methods. The SnO2 nanoparticles are nearly spherical with the particle size of ~?10 nm. An enhanced formaldehyde sensing of as-synthesized SnO2-ZSM-5-based sensor was observed whereas a suppression on the sensor response to other volatile organic vapors (VOCs) such as acetone, ethanol, and methanol was noticed. The possible reasons for this contrary observation were proposed to be related to the amount of the produced water vapor during the sensing reactions assisted by the ZSM-5 nanoparticles. This provides a possible new strategy to improve the selectivity of the gas sensors. The effect of the humidity on the sensor response to formaldehyde was investigated and it was found the higher humidity would decrease the sensor response. A coating layer of the ZSM-5 nanoparticles on top of the SnO2-ZSM-5-sensing film was thus applied to further improve the sensitivity and selectivity of the sensor through the strong adsorption ability to polar gases and the “filtering effect” by the pores of ZSM-5.  相似文献   

20.
Metal-oxide nanocomposites were prepared over screen-printed gold electrodes to be used as room-temperature NOx (nitric-oxide (NO) and nitrogen dioxide (NO2)) sensors. Various weight ratios of SnO2–WO3 and Pt loadings were used for NO sensing. The sensing materials were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM) and BET surface analysis. The NO-sensing results indicated that SnO2–WO3 (1:2) was more effective than other materials were. The sensor response (S=resistance of N2/resistance of NO=RN2/RNO) for detecting 1000 ppm of NO at room temperature was 2.6. The response time (T90) and recovery time (TR90) was 40 s and 86 s, respectively. By further loading with 0.5% Pt, the sensor response increased to 3.3. The response and recovery times of 0.5% Pt/SnO2–WO3 (1:2) were 40 s and 206 s, respectively. The linearity of the sensor response for a NO concentration range of 10–1000 ppm was 0.9729. A mechanism involving Pt promotion of the SnO2–WO3 heterojunction was proposed for NO adsorption, surface reaction, and adsorbed NO2 desorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号