首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
In earlier work, de novo designed peptides with a helix-loop-helix motif and 63 residues have been synthesized as potential scaffolds for stabilization of the [Ni(II)-X-Fe(4)S(4)] bridged assembly that is the spectroscopically deduced structure of the A-Cluster in clostridial carbon monoxide dehydrogenase. The 63mers contain a consensus tricysteinyl ferredoxin domain in the loop for binding an Fe(4)S(4) cluster and Cys and His residues proximate to the loop for binding Ni(II), with one Cys residue designed as the bridge X. The metallopeptides HC(4)H(2)-[Fe(4)S(4)]-Ni and HC(5)H-[Fe(4)S(4)]-M, containing three His and one Cys residue for Ni(II) coordination and two His and two Cys residues for binding M = Ni(II) and Co(II), have been examined by Fe-, Ni-, and Co-K edge spectroscopy and EXAFS. All peptides bind an [Fe(4)S(4)](2+) cubane-type cluster. Interpretation of the Ni and Co data is complicated by the presence of a minority population of six-coordinate species with low Z ligands, designated for simplicity as [M(OH(2))(6)](2+). Best fits of the data were obtained with ca. 20% [M(OH(2))(6)](2+) and ca. 80% M(II) with mixed N/S coordination. The collective XAS results for HC(4)H(2)-[Fe(4)S(4)]-Ni and HC(5)H-[Fe(4)S(4)]-M demonstrate the presence of an Fe(4)S(4) cluster and support the existence of the distorted square-planar coordination units [Ni(II)(S.Cys)(N.His)(3)] and [Ni(II)(S.Cys)(2)(N.His)(2)] in the HC(4)H(2) and HC(5)H metallopeptides, respectively. In the HC(5)H metallopeptide, tetrahedral [Co(II)(S.Cys)(2)(N.His)(2)] is present. We conclude that the designed scaffolded binding sites, including Ni-(mu(2)-S.Cys)-Fe bridges, have been achieved. This is the first XAS study of a de novo designed metallopeptide intended to stabilize a bridged biological assembly, and one of a few XAS analyses of metal derivatives of designed peptides. The scaffolding concept should be extendable to other bridged metal assemblies.  相似文献   

2.
The use of 1,3,5-triaminocyclohexane (tach) as a capping ligand in generating metal-cyanide cage clusters with accessible cavities is demonstrated. The precursor complexes [(tach)M(CN)(3)] (M = Cr, Fe, Co) are synthesized by methods similar to those employed in preparing the analogous 1,4,7-triazacyclononane (tacn) complexes. Along with [(tach)Fe(CN)(3)](1)(-), the latter two species are found to adopt low-spin electron configurations. Assembly reactions between [(tach)M(CN)(3)] (M = Fe, Co) and [M'(H(2)O)(6)](2+) (M' = Ni, Co) in aqueous solution afford the clusters [(tach)(4)(H(2)O)(12)Ni(4)Co(4)(CN)(12)](8+), [(tach)(4)(H(2)O)(12)Co(8)(CN)(12)](8+), and [(tach)(4)(H(2)O)(12)Ni(4)Fe(4)(CN)(12)](8+), each possessing a cubic arrangement of eight metal ions linked through edge-spanning cyanide bridges. This geometry is stabilized by hydrogen-bonding interactions between tach and water ligands through an intervening solvate water molecule or bromide counteranion. The magnetic behavior of the Ni(4)Fe(4) cluster indicates weak ferromagnetic coupling (J = 5.5 cm(-)(1)) between the Ni(II) and Fe(III) centers, leading to an S = 6 ground state. Solutions containing [(tach)Fe(CN)(3)] and a large excess of [Ni(H(2)O)(6)](2+) instead yield a trigonal pyramidal [(tach)(H(2)O)(15)Ni(3)Fe(CN)(3)](6+) cluster, in which even weaker ferromagnetic coupling (J = 1.2 cm(-)(1)) gives rise to an S = (7)/(2) ground state. Paralleling reactions previously performed with [(Me(3)tacn)Cr(CN)(3)], [(tach)Cr(CN)(3)] reacts with [Ni(H(2)O)(6)](2+) in aqueous solution to produce [(tach)(8)Cr(8)Ni(6)(CN)(24)](12+), featuring a structure based on a cube of Cr(III) ions with each face centered by a square planar [Ni(CN)(4)](2)(-) unit. The metal-cyanide cage differs somewhat from that of the analogous Me(3)tacn-ligated cluster, however, in that it is distorted via compression along a body diagonal of the cube. Additionally, the compact tach capping ligands do not hinder access to the sizable interior cavity of the molecule, permitting host-guest chemistry. Mass spectrometry experiments indicate a 1:1 association of the intact cluster with tetrahydrofuran (THF) in aqueous solution, and a crystal structure shows the THF molecule to be suspended in the middle of the cluster cavity. Addition of THF to an aqueous solution containing [(tach)Co(CN)(3)] and [Cu(H(2)O)(6)](2+) templates the formation of a closely related cluster, [(tach)(8)(H(2)O)(6)Cu(6)Co(8)(CN)(24) superset THF](12+), in which paramagnetic Cu(II) ions with square pyramidal coordination are situated on the face-centering sites. Reactions intended to produce the cubic [(tach)(4)(H(2)O)(12)Co(8)(CN)(12)](8+) cluster frequently led to an isomeric two-dimensional framework, [(tach)(H(2)O)(3)Co(2)(CN)(3)](2+), exhibiting mer rather than fac stereochemistry at the [Co(H(2)O)(3)](2+) subunits. Attempts to assemble larger edge-bridged cubic clusters by reacting [(tach)Cr(CN)(3)] with [Ni(cyclam)](2+) (cyclam = 1,4,8,11-tetraazacyclotetradecane) complexes instead generated extended one- or two-dimensional solids. The magnetic properties of one of these solids, two-dimensional [(tach)(2)(cyclam)(3)Ni(3)Cr(2)(CN)(6)]I(2), suggest metamagnetic behavior, with ferromagnetic intralayer coupling and weak antiferromagnetic interactions between layers.  相似文献   

3.
4.
The reactivity of protein bound iron-sulfur clusters with nitric oxide (NO) is well documented, but little is known about the actual mechanism of cluster nitrosylation. Here, we report studies of members of the Wbl family of [4Fe-4S] containing proteins, which play key roles in regulating developmental processes in actinomycetes, including Streptomyces and Mycobacteria, and have been shown to be NO responsive. Streptomyces coelicolor WhiD and Mycobacterium tuberculosis WhiB1 react extremely rapidly with NO in a multiphasic reaction involving, remarkably, 8 NO molecules per [4Fe-4S] cluster. The reaction is 10(4)-fold faster than that observed with O(2) and is by far the most rapid iron-sulfur cluster nitrosylation reaction reported to date. An overall stoichiometry of [Fe(4)S(4)(Cys)(4)](2-) + 8NO → 2[Fe(I)(2)(NO)(4)(Cys)(2)](0) + S(2-) + 3S(0) has been established by determination of the sulfur products and their oxidation states. Kinetic analysis leads to a four-step mechanism that accounts for the observed NO dependence. DFT calculations suggest the possibility that the nitrosylation product is a novel cluster [Fe(I)(4)(NO)(8)(Cys)(4)](0) derived by dimerization of a pair of Roussin's red ester (RRE) complexes.  相似文献   

5.
Hydrogenases catalyze the reversible oxidation of dihydrogen to protons and electrons. The structures of two Fe-only hydrogenases have been recently reported [Peters, J. W.; Lanzilotta, W. N.; Lemon, B. J.; Seefeldt, L. C. Science 1998, 282, 1853-1858. Nicolet, Y.; Piras, C.; Legrand, P.; Hatchikian, E. C.; Fontecilla-Camps, J. C. Structure 1999, 7, 13-23], showing that the likely site of dihydrogen activation is the so-called [2Fe](H) cluster, where each Fe ion is coordinated by CO and CN(-) ligands and the two metals are bridged by a chelating S-X(3)-S ligand. Moreover, the presence of a water molecule coordinated to the distal Fe2 center suggested that the Fe2 atom could be a suitable site for binding and activation of H(2). In this contribution, we report a density functional theory investigation of the structural and electronic properties of complexes derived from the [(CO)(CH(3)S)(CN)Fe(II)(mu-PDT)Fe(II)(CO)(2)(CN)](-1) species, which is related to the [2Fe](H) cluster observed in Fe-only hydrogenases. Our results show that the structure of the [2Fe](H) cluster observed in the enzyme does not correspond to a stable form of the isolated cluster, in the absence of the protein. As a consequence, the reactivity of [(CO)(CH(3)S)(CN)Fe(II)(mu-PDT)Fe(II)(CO)(2)(CN)](-1) derivatives in solution may be expected to be quite different from that of the active site of Fe-only hydrogenases. In fact, the most favorable path for H(2) activation involves the two metal atoms and one of the bridging S atoms and is associated with a very low activation energy (5.3 kcal mol(-1)). The relevance of these observations for the catalytic properties of Fe-only hydrogenases is discussed in light of available experimental and theoretical data.  相似文献   

6.
Synthesis of an analogue of the C-cluster of C. hydrogenoformans carbon monoxide dehydrogenase requires formation of a planar Ni(II) site and attachment of an exo iron atom in the core unit NiFe(4)S(5). The first objective has been achieved by two reactions: (i) displacement of Ph(3)P or Bu(t)()NC at tetrahedral Ni(II) sites of cubane-type [NiFe(3)S(4)](+) clusters with chelating diphosphines, and (ii) metal atom incorporation into a cuboidal [Fe(3)S(4)](0) cluster with a M(0) reactant in the presence of bis(1,2-dimethylphosphino)ethane (dmpe). The isolated product clusters [(dmpe)MFe(3)S(4)(LS(3))](2-) (M = Ni(II) (9), Pd(II) (12), Pt(II) (13); LS(3) = 1,3,5-tris((4,6-dimethyl-3-mercaptophenyl)thio)-2,4,6-tris(p-tolylthio)benzene(3-)) contain the cores [MFe(3)(mu(2)-S)(mu(3)-S)(3)](+) having planar M(II)P(2)S(2) sites and variable nonbonding M...S distances of 2.6-3.4 A. Reaction (i) involves a tetrahedral --> planar Ni(II) structural change between isomeric cubane and cubanoid [NiFe(3)S(4)](+) cores. Based on the magnetic properties of 12 and earlier considerations, the S = (5)/(2) ground state of the cubanoid cluster arises from the [Fe(3)S(4)](-) fragment, whereas the S = (3)/(2) ground state of the cubane cluster is a consequence of antiferromagnetic coupling between the spins of Ni(2+) (S = 1) and [Fe(3)S(4)](-). Other substitution reactions of [NiFe(3)S(4)](+) clusters and 1:3 site-differentiated [Fe(4)S(4)](2+) clusters are described, as are the structures of 12, 13, [(Me(3)P)NiFe(3)S(4)(LS(3))](2-), and [Fe(4)S(4)(LS(3))L'](2-) (L' = Me(2)NC(2)H(4)S(-), Ph(2)P(O)C(2)H(4)S(-)). This work significantly expands our initial report of cluster 9 (Panda et al. J. Am. Chem. Soc. 2004, 126, 6448-6459) and further demonstrates that a planar M(II) site can be stabilized within a cubanoid [NiFe(3)S(4)](+) core.  相似文献   

7.
The construction of a synthetic analogue of the A-cluster of carbon monoxide dehydrogenase/acetylcoenzyme synthase, the site of acetylcoenzyme A formation, requires as a final step the formation of an unsupported [Fe(4)S(4)]-(mu(2)-SR)-Ni(II) bridge to a preformed cluster. Our previous results (Rao, P. V.; Bhaduri, S.; Jiang, J.; Holm, R. H. Inorg. Chem. 2004, 43, 5833) and the work of others have addressed synthesis of dinuclear complexes relevant to the A-cluster. This investigation concentrates on reactions pertinent to bridge formation by examining systems containing dinuclear and mononuclear Ni(II) complexes and the 3:1 site-differentiated clusters [Fe(4)S(4)(LS(3))L'](2-) (L' = TfO(-) (14), SEt (15)). The system 14/[{Ni(L(O)-S(2)N(2))}M(SCH(2)CH(2)PPh(2))](+) results in cleavage of the dinuclear complex and formation of [{Ni(L(O)-S(2)N(2))}Fe(4)S(4)(LS(3))]- (18), in which the Ni(II) complex binds at the unique cluster site with formation of a Ni(mu(2)-SR)(2)Fe bridge rhomb. Cluster 18 and the related species [{Ni(phma)}Fe(4)S(4)(LS(3))](3)- (19) are obtainable by direct reaction of the corresponding cis-planar Ni(II)-S(2)N(2) complexes with 14. The mononuclear complexes [M(pdmt)(SEt)]- (M = Ni(II), Pd(II)) with 14 in acetonitrile or Me(2)SO solution react by thiolate transfer to give 15 and [M(2)(pdmt)(2)]. However, in dichloromethane the Ni(II) reaction product is interpreted as [{Ni(pdmt)(mu(2)-SEt)}Fe(4)S(4)(LS(3))](2-) (20). Reaction of Et(3)NH(+) and 15 affords the double cubane [{Fe(4)S(4)(LS(3))}(2)(mu(2)-SEt)](3-) (21). Cluster 18 contains two mutually supportive Fe-(mu(2)-SR)-Ni(II) bridges, 19 exhibits one strong and one weaker bridge, 20 has one unsupported bridge (inferred from the (1)H NMR spectrum), and 21 has one unsupported Fe-(mu(2)-SR)-Fe bridge. Bridges in 18, 19, and 21 were established by X-ray structures. This work demonstrates that a bridge of the type found in the enzyme A-clusters is achievable by synthesis and implies that more stable, unsupported single thiolate bridges may require reinforcement by an additional covalent linkage between the Fe(4)S(4) and nickel-containing components. (LS(3) = 1,3,5-tris((4,6-dimethyl-3-mercaptophenyl)thio)-2,4,6-tris(p-tolylthio)benzene(3-); L(O)-S(2)N(2) = N,N'-diethyl-3,7-diazanonane-1,9-dithiolate(2-); pdmt = pyridine-2,6-methanedithiolate(2-); phma = N,N'-1,2-phenylenebis(2-acetylthio)acetamidate(4-); TfO = triflate.).  相似文献   

8.
The structures of the P cluster and cofactor cluster of nitrogenase are well-defined crystallographically. They have been obtained only by biosynthesis; their chemical synthesis remains a challenge. Synthetic routes are sought to the P cluster in the P(N) state in which two cuboidal Fe(3)S(3) units are connected by a mu(6)-S atom and two Fe-(mu(2)-S(Cys))-Fe bridges. A reaction scheme affording a Mo(2)Fe(6)S(9) cluster in molecular form having the topology of the P(N) cluster has been devised. Reaction of the single cubane [(Tp)MoFe(3)S(4)Cl(3)](1)(-) with PEt(3) gives [(Tp)MoFe(3)S(4)(PEt(3))(3)](1+) (2), which upon reduction with BH(4)(-) affords the edge-bridged all-ferrous double cubane [(Tp)(2)Mo(2)Fe(6)S(8)(PEt(3))(4)] (4) (Tp = tris(pyrazolylhydroborate(1-)). Treatment of 4 with 3 equiv of HS(-) produces [(Tp)(2)Mo(2)Fe(6)S(9)(SH)(2)](3)(-) (7) as the Et(4)N(+) salt in 86% yield. The structure of 7 is built of two (Tp)MoFe(3)(mu(3)-S)(3) cuboidal fragments bridged by two mu(2)-S atoms and one mu(6)-S atom in an arrangement of idealized C(2) symmetry. The cluster undergoes three one-electron oxidation reactions and is oxidatively cleaved by p-tolylthiol to [(Tp)MoFe(3)S(4)(S-p-tol)(3)](2)(-) and by weak acids to [(Tp)MoFe(3)S(4)(SH)(3)](2-). The cluster core of 7 has the bridging pattern [Mo(2)Fe(6)(mu(2)-S)(2)(mu(3)-S)(6)(mu(6)-S)](1+) with the probable charge distribution [Mo(3+)(2)Fe(2+)(5)Fe(3+)S(9)](1+). Cluster 7 is a topological analogue of the P(N) cluster but differs in having two heteroatoms and two Fe-(mu(2)-S)-Fe instead of two Fe-(mu(2)-S(Cys))-Fe bridges. A best-fit superposition of the two cluster cores affords a weighted rms deviation in atom positions of 0.38 A. Cluster 7 is the first molecular topological analogue of the P(N) cluster. This structure had been prepared previously only as a fragment of complex high-nuclearity Mo-Fe-S clusters.  相似文献   

9.
A series of bimetallic, trigonal bipyramidal clusters of type {[Co(N-N)(2)](3)[Fe(CN)(6)](2)} are reported. The reaction of {Co(tmphen)(2)}(2+) with [Fe(CN)(6)](3)(-) in MeCN affords {[Co(tmphen)(2)](3)[Fe(CN)(6)](2)} (1). The cluster can exist in three different solid-state phases: a red crystalline phase, a blue solid phase obtained by exposure of the red crystals to moisture, and a red solid phase obtained by desolvation of the blue solid phase in vacuo. The properties of cluster 1 are extremely sensitive to both temperature and solvent content in each of these phases. Variable-temperature X-ray crystallography; (57)Fe Mossbauer, vibrational, and optical spectroscopies; and magnetochemical studies were used to study the three phases of 1 and related compounds, Na{[Co(tmphen)(2)](3)[Fe(CN)(6)](2)}(ClO(4))(2) (2), {[Co(bpy)(2)](3)[Fe(CN)(6)](2)}[Fe(CN)(6)](1/3) (3), and {[Ni(tmphen)(2)](3)[Fe(CN)(6)](2)} (4). The combined structural and spectroscopic investigation of 1-4 leads to the unambiguous conclusion that 1 can exist in different electronic isomeric forms, {Co(III)(2)Co(II)Fe(II)(2)} (1A), {Co(III)Co(II)(2)Fe(III)Fe(II)} (1B), and {Co(II)(3)Fe(III)(2)} (1C), and that it can undergo a charge-transfer-induced spin transition (CTIST). This is the first time that such a phenomenon has been observed for a Co/Fe molecule.  相似文献   

10.
As an extension of prior studies involving the linear quaterpyridine ligand, 5,5'-dimethyl-2,2':5',5':2',2'-quaterpyridine 1, the synthesis of the related expanded quaterpyridine derivatives 2 and 3 incorporating dimethoxy-substituted 1,4-phenylene and tetramethoxy-substituted 4,4'-biphenylene bridges between pairs of 2,2'-bipyridyl groups has been carried out via double-Suzuki coupling reactions between 5-bromo-5'-methyl-2'-bipyridine and the appropriate di-pinacol-diboronic esters using microwave heating. Reaction of 2 and 3 with selected Fe(II) or Ni(II) salts yields a mixture of both [M(2)L(3)](4+) triple helicates and [M(4)L(6)](8+) tetrahedra, in particular cases the ratio of the products formed was shown to be dependent on the reaction conditions; the respective products are all sufficiently inert to allow their chromatographic separation and isolation. Longer reaction times and higher concentrations were found to favour tetrahedron formation. The X-ray structures of solvated [Ni(2)(2)(3)](PF(6))(4), [(PF(6)) ? Fe(4)(2)(6)](PF(6))(7), [Fe(4)(3)(6)](PF(6))(8) and [Ni(4)(3)(6)](PF(6))(8) have been determined, while the structure of the parent Fe(II) cage in the series, [(PF(6)) ? Fe(4)(1)(6)](PF(6))(7), was reported previously. The internal volumes of the Fe(II) tetrahedral cages have been calculated and increase from 102 ?(3) for [Fe(4)(1)(6)](8+) to 227 ?(3) for [Fe(4)(2)(6)](8+) to 417 ?(3) for [Fe(4)(3)(6)](8+) and to an impressive 839 ?(3) for [Ni(4)(3)(6)](8+). The corresponding void volume in the triple helicate [Ni(2)(2)(3)](4+) is 29 ?(3).  相似文献   

11.
The reaction of [Ni[Co(aet)(2)(pyt)](2)](2+) (aet = 2-aminoethanethiolate, pyt = 2-pyridinethiolate) with [PtCl(4)](2)(-) gave an S-bridged Co(III)Pt(II)Co(III) trinuclear complex composed of two [Co(aet)(2)(pyt)] units, [Pt[Co(aet)(2)(pyt)](2)](2+) ([1](2+)). When a 1:1 mixture of [Ni[Co(aet)(2)(pyt)](2)](2+) and [Ni[Co(aet)(2)(en)](2)](4+) was reacted with [PtCl(4)](2)(-), a mixed-type S-bridged Co(III)Pt(II)Co(III) complex composed of one [Co(aet)(2)(pyt)] and one [Co(aet)(2)(en)](+) units, [Pt[Co(aet)(2)(en)][Co(aet)(2)(pyt)]](3+) ([2](3+)), was produced, together with [1](2+) and [Pt[Co(aet)(2)(en)](2)](4+). The corresponding Co(III)Pt(II)Co(III) trinuclear complexes containing pymt (2-pyrimidinethiolate), [Pt[Co(aet)(2)(pymt)](2)](2+) ([3](2+)) and [Pt[Co(aet)(2)(en)][Co(aet)(2)(pymt)]](3+) ([4](3+)), were also obtained by similar reactions, using [Ni[Co(aet)(2)(pymt)](2)](2+) instead of [Ni[Co(aet)(2)(pyt)](2)](2+). While [Pt[Co(aet)(2)(en)](2)](4+) formed both the deltalambda (meso) and deltadelta/lambdalambda (racemic) forms in a ratio of ca. 1:1, the preferential formation of the deltadelta/lambdalambda form was observed for [1](2+) (ca. deltalambda:deltadelta/lambdalambda = 1:3) and [2](3+) (ca. delta(en)lambda(pyt)/lambda(en)delta(pyt):deltadelta/lambdalambda = 1:2). Furthermore, [3](2+) and [4](3+) predominantly formed the deltadelta/lambdalambda form. These results indicate that the homochiral selectivity for the S-bridged Co(III)Pt(II)Co(III) trinuclear complexes composed of two octahedral [Co(aet)(2)(L)](0 or +) units is enhanced in the order L = en < pyt < pymt. The isomers produced were separated and optically resolved, and the crystal structures of the meso-type deltalambda-[1]Cl(2).4H(2)O and the spontaneously resolved deltadelta-[4](ClO(4))(3).H(2)O were determined by X-ray analyses. In deltalambda-[1](2+), the delta and Lambda configurational mer(S).trans(N(aet))-[Co(aet)(2)(pyt)] units are linked by a square-planar Pt(II) ion through four aet S atoms to form a linear-type S-bridged trinuclear structure. In deltadelta-[4](3+), a similar linear-type trinuclear structure is constructed from the delta-mer(S).trans(N(aet))-[Co(aet)(2)(pymt)] and delta-C(2)-cis(S)-[Co(aet)(2)(en)](+) units that are bound by a Pt(II) ion with a slightly distorted square-planar geometry through four aet S atoms.  相似文献   

12.
New heterobimetallic tetranuclear complexes of formula [Fe(III){B(pz)(4)}(CN)(2)(μ-CN)Mn(II)(bpy)(2)](2)(ClO(4))(2)·CH(3)CN (1), [Fe(III){HB(pz)(3)}(CN)(2)(μ-CN)Ni(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (2a), [Fe(III){B(pz)(4)}(CN)(2)(μ-CN)Ni(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (2b), [Fe(III){HB(pz)(3)}(CN)(2)(μ-CN)Co(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (3a), and [Fe(III){B(pz)(4)}(CN)(2)(μ-CN)Co(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (3b), [HB(pz)(3)(-) = hydrotris(1-pyrazolyl)borate, B(Pz)(4)(-) = tetrakis(1-pyrazolyl)borate, dmphen = 2,9-dimethyl-1,10-phenanthroline, bpy = 2,2'-bipyridine] have been synthesized and structurally and magnetically characterized. Complexes 1-3b have been prepared by following a rational route based on the self-assembly of the tricyanometalate precursor fac-[Fe(III)(L)(CN)(3)](-) (L = tridentate anionic ligand) and cationic preformed complexes [M(II)(L')(2)(H(2)O)(2)](2+) (L' = bidentate α-diimine type ligand), this last species having four blocked coordination sites and two labile ones located in cis positions. The structures of 1-3b consist of cationic tetranuclear Fe(III)(2)M(II)(2) square complexes [M = Mn (1), Ni (2a and 2b), Co (3a and 3b)] where corners are defined by the metal ions and the edges by the Fe-CN-M units. The charge is balanced by free perchlorate anions. The [Fe(L)(CN)(3)](-) complex in 1-3b acts as a ligand through two cyanide groups toward two divalent metal complexes. The magnetic properties of 1-3b have been investigated in the temperature range 2-300 K. A moderately strong antiferromagnetic interaction between the low-spin Fe(III) (S = 1/2) and high-spin Mn(II) (S = 5/2) ions has been found for 1 leading to an S = 4 ground state (J(1) = -6.2 and J(2) = -2.7 cm(-1)), whereas a moderately strong ferromagnetic interaction between the low-spin Fe(III) (S = 1/2) and high-spin Ni(II) (S = 1) and Co(II) (S = 3/2) ions has been found for complexes 2a-3b with S = 3 (2a and 2b) and S = 4 (3a and 3b) ground spin states [J(1) = +21.4 cm(-1) and J(2) = +19.4 cm(-1) (2a); J(1) = +17.0 cm(-1) and J(2) = +12.5 cm(-1) (2b); J(1) = +5.4 cm(-1) and J(2) = +11.1 cm(-1) (3a); J(1) = +8.1 cm(-1) and J(2) = +11.0 cm(-1) (3b)] [the exchange Hamiltonian being of the type H? = -J(S?(i)·S?(j))]. Density functional theory (DFT) calculations have been used to substantiate the nature and magnitude of the exchange magnetic coupling observed in 1-3b and also to analyze the dependence of the exchange magnetic coupling on the structural parameters of the Fe-C-N-M skeleton.  相似文献   

13.
The capillary electrophoretic separation was accomplished for Fe(II) and Ni(II) precomplexed with 1,10-phenanthroline (phen) in 2 M n-butyric acid/ n-butyrate buffer at pH 4.5 with direct UV detection at 260 nm. The applied voltage was 5 kV. The high concentration buffer of the n-butyrate resulted in a similar separation mechanism to that of ion-pair reversed-phase high-performance liquid chromatography. The separation would be due to the hydrophobic interaction between the ionic associates, [Fe(phen)(3)]( n-butyrate)(+) and [Ni(phen)(3)]( n-butyrate)(+), with the n-butyrate ion and n-butyric acid as background electrolyte. Linear calibration ranges were obtained for Fe(II) and Ni(II) from 100 to 500 ng ml(-1). The relative standard deviations ( n=10) for 3 g mL(-1) Fe(II) and Ni(II) were 0.090 and 0.086, respectively. Detection limits ( S/ N=3) for Fe(II) and Ni(II) were 20 ng mL(-1). The method was applied to the determination of nickel in aluminium and duralumin alloys.  相似文献   

14.
Kou HZ  Zhou BC  Liao DZ  Wang RJ  Li Y 《Inorganic chemistry》2002,41(25):6887-6891
Two cyano-bridged Ni(II)-Fe(III) complexes [(H(3)O)[Ni(H(2)L)](2)[Fe(CN)(6)](2).[Fe(CN)(6)].6H(2)O](n) (1) and [K(18-C-6)(H(2)O)(2)][Ni(H(2)L)](2)[Fe(CN)(6)](3).4(18-C-6).20H(2)O (2) (L = 3,10-bis(2-aminoethyl)-1,3,6,8,10,12-hexaazacyclotetradecane, 18-C-6 = 18-crown-6-ether) have been synthesized and characterized structurally and magnetically. Complex 1 has a zigzag one-dimensional structure, in which two trans-CN(-) ligands of each [Fe(CN)(6)](3)(-) link two trans-[Ni(H(2)L)](4+) groups, and in turn, each trans-[Ni(H(2)L)](4+) links two [Fe(CN)(6)](3)(-) in a trans fashion. Complex 2 is composed of cyano-bridged pentanuclear molecules with moieties connected by the trans-CN(-) ligands of [Fe(CN)(6)](3)(-). Magnetic studies show the existence of ferromagnetic Ni(II)-Fe(III) interactions in both complexes. The intermetallic magnetic coupling constant of both complexes was analyzed by using an approximate model on the basis of the structural features.  相似文献   

15.
Reaction of the complex [Ni(rac-CTH)](2+) (rac-CTH = rac-5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane) with [Fe(CN)(6)](3-) leads to a novel cyano-bridged Ni(3)Fe(2) complex, [[Ni(rac-CTH)](3)[Fe(CN)(6)](2)](4). The structure consists of an alternating arrangement of [Fe(CN)(6)Ni(rac-CTH)](2) squares and trans-planar [Ni(rac-CTH)](2+) units bridged by cyanide groups to give a neutral 1D chain running along the a axis. Magnetic measurements reveal the occurrence of ferromagnetic coupling between Fe(III) and Ni(II) ions and 3D magnetic ordering at 3 K due to interchain interactions. Canting of the moments is inferred from the low value of the magnetization of the saturation below T(c).  相似文献   

16.
Synthetic methods are described that have resulted in the formation of seven heterometallic complexes, all of which contain partially deprotonated forms of the ligand triethanolamine (teaH(3)). These compounds are [Mn(III)(4)Co(III)(2)Co(II)(2)O(2)(teaH(2))(2)(teaH)(0.82)(dea)(3.18)(O(2)CMe)(2)(OMe)(2)](BF(4))(2)(O(2)CMe)(2)·3.18MeOH·H(2)O (1), [Mn(II)(2)Mn(III)(2)Co(III)(2)(teaH)(4)(OMe)(2)(acac)(4)](NO(3))(2)·2MeOH (2), [Mn(III)(2)Ni(II)(4)(teaH)(4)(O(2)CMe)(6)]·2MeCN (3), [Mn(III)(2)Co(II)(2)(teaH)(2)(sal)(2)(acac)(2)(MeOH)(2)]·2MeOH (4), [Mn(II)(2)Fe(III)(2)(teaH)(2)(paa)(4)](NO(3))(2)·2MeOH·CH(2)Cl(2) (5), [Mn(II)Mn(III)(2)Co(III)(2)O(teaH)(2)(dea)(Iso)(OMe)(F)(2)(Phen)(2)](BF(4))(NO(3))·3MeOH (6) and [Mn(II)(2)Mn(III)Co(III)(2)(OH)(teaH)(3)(teaH(2))(acac)(3)](NO(3))(2)·3CH(2)Cl(2) (7). All of the compounds contain manganese, combined with 3d transition metal ions such as Fe, Co and Ni. The crystal structures are described and examples of 'rods', tetranuclear 'butterfly' and 'triangular' Mn(3) cluster motifs, flanked in some cases by diamagnetic cobalt(III) centres, are presented. Detailed DC and AC magnetic susceptibility and magnetization studies, combined with spin Hamiltonian analysis, have yielded J values and identified the spin ground states. In most cases, the energies of the low-lying excited states have also been obtained. The features of note include the 'inverse butterfly' spin arrangement in 2, 4 and 5. A S = 5/2 ground state occurs, for the first time, in the Mn(III)(2)Mn(II) triangular moiety within 6, the many other reported [Mn(3)O](6+) examples having S = ? or 3/2 ground states. Compound 7 provides the first example of a Mn(II)(2)Mn(III) triangle, here within a pentanuclear Mn(3)Co(2) cluster.  相似文献   

17.
The combination of hexacyanoferrate(III) anions, [Fe(CN)(6)](3)(-), with nickel(II) complexes derived from the chiral ligand trans-cyclohexane-1,2-diamine (trans-chxn) affords the enantiopure layered compounds [Ni(trans-(1S,2S)-chxn)(2)](3)[Fe(CN)(6)](2).2H(2)O (1) and [Ni(trans-(1R,2R)-chxn)(2)](3)[Fe(CN)(6)](2).2H(2)O (2). These chiral systems behave as ferromagnets (T(c) = 13.8 K) with a relatively high coercive field (H(c) = 0.17 T) at 2 K. They also exhibit an unusual magnetic behavior at low temperatures that has been attributed to the dynamics of the magnetic domains in the ordered phase.  相似文献   

18.
The reaction of Fe(CO)(2)(NO)(2) and Ni(N(2)S(2)) (N(2)S(2) = N,N'-Bis(2-mercaptoethyl)-1,4-diazacycloheptane) by a single CO replacement yields [Ni(N(2)S(2))]Fe(NO)(2)(CO), while an excess of Fe(CO)(2)(NO)(2) leads to triply bridging thiolate sulphurs in a cluster of core composition Ni(2)S(4)Fe(3), lacking one Fe(NO)(2) unit to complete the adamantane-like structure. This structural type was earlier identified in a Cu(I)Cl aggregate of M(II)(N(2)S(2)) (M(II) = Ni, Cu), in which complete M(II)(2)S(4)Cu(I)(4) core structures were obtained as the major, and, in the case of Cu(II)(N(2)S(2)), the incomplete Cu(II)(2)S(4)Cu(I)(3) as a minor, product. The full Ni(2)S(4)Fe(4) cluster has not yet been realized for Fe = Fe(NO)(2). Computational analysis of the NiFe-heterobimetallic complex addresses structural issues including a ∠Ni-S-Fe of 90° in the bimetallic complex.  相似文献   

19.
The heterometallic Mn(II)(4)Ni(II)(2) title compound has been synthesized and characterized by X-ray crystallography. The compound consists of a Ni-Mn-Ni linear moiety, [[Ni-(mu-NO)(3)](2)-Mn], linked by oximate bridges and three Mn(II) hfac terminal units attached by oximate oxygens in a di-mu-oxo fashion, forming a novel heterometallic cluster: Mn[Mn(hfac)(2)](3)[Ni(pao)(3)](2) (1). Magnetic measurements reveal the antiferromagnetic nature of the oximate pathway between Mn(II) and Ni(II) metal ions, which imposes an unusual high-spin ground state (S = 8) for 1.  相似文献   

20.
Edge-bridged Mo-Fe-S double cubanes are versatile precursors for the synthesis of other clusters of the same nuclearity. Thus, the double cubane [(Tp)(2)Mo(2)Fe(6)S(8)(PEt(3))(4)] sustains terminal ligand substitution with retention of the Mo(2)Fe(6)(micro(3)-S)(6)(micro(4)-S)(2) core structure and rearrangement to the Mo(2)Fe(6)(micro(2)-S)(2)(micro(3)-S)(6)(micro(6)-S) topology of the nitrogenase P(N) cluster upon reaction with certain nucleophiles. Four distinct processes for the conversion of double cubanes to P(N)-type clusters are documented, affording the products [(Tp)(2)Mo(2)Fe(6)S(9)(SR)(2)](3)(-), [(Tp)(2)Mo(2)Fe(6)S(8)(OMe)(3)](3)(-), and [(Tp)(2)Mo(2)Fe(6)S(7)(OMe)(4)](2)(-). In the latter clusters, two methoxides are terminal ligands and one or two are micro(2)-bridging ligands. The reverse transformation of a P(N)-type cluster to an edge-bridged double cubane has been demonstrated by the reaction of [(Tp)(2)Mo(2)Fe(6)S(8)(OMe)(3)](3)(-) with Me(3)SiX to afford [(Tp)(2)Mo(2)Fe(6)S(8)X(4)](2)(-) (X = Cl(-), Br(-)). Edge-bridged double cubanes have been obtained in the oxidation states [Mo(2)Fe(6)S(8)](2+,3+,4+). The stable oxidation state of P(N)-type clusters is [Mo(2)Fe(6)S(9)](+). Structures of five double cubanes and four P(N)-type clusters are reported. The P(N)-type clusters are synthetic representations of the biologically unique topology of the native P(N) cluster. Best-fit superpositions of the native and synthetic cluster cores gives weighted rms deviations in atom positions of 0.20-0.38 A. This study and an earlier investigation (Zhang, Y.; Holm, R. H. J. Am. Chem. Soc. 2003, 125, 3910-3920) provide a comprehensive account of the synthesis of structural analogues of the native P(N) cluster and provide the basis for continuing investigation of the synthesis of weak-field Mo-Fe-S clusters related to nitrogenase. (Tp = tris(pyrazolyl)hydroborate(1-).)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号