首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
To examine spectral effects on declines in speech recognition in noise at high levels, word recognition for 18 young adults with normal hearing was assessed for low-pass-filtered speech and speech-shaped maskers or high-pass-filtered speech and speech-shaped maskers at three speech levels (70, 77, and 84 dB SPL) for each of three signal-to-noise ratios (+8, +3, and -2 dB). An additional low-level noise produced equivalent masked thresholds for all subjects. Pure-tone thresholds were measured in quiet and in all maskers. If word recognition was determined entirely by signal-to-noise ratio, and was independent of signal levels and the spectral content of speech and maskers, scores should remain constant with increasing level for both low- and high-frequency speech and maskers. Recognition of low-frequency speech in low-frequency maskers and high-frequency speech in high-frequency maskers decreased significantly with increasing speech level when signal-to-noise ratio was held constant. For low-frequency speech and speech-shaped maskers, the decline was attributed to nonlinear growth of masking which reduced the "effective" signal-to-noise ratio at high levels, similar to previous results for broadband speech and speech-shaped maskers. Masking growth and reduced "effective" signal-to-noise ratio accounted for some but not all the decline in recognition of high-frequency speech in high-frequency maskers.  相似文献   

2.
Under certain conditions, speech recognition in noise decreases above conversational levels when signal-to-noise ratio is held constant. The current study was undertaken to determine if nonlinear growth of masking and the subsequent reduction in "effective" signal-to-noise ratio accounts for this decline. Nine young adults with normal hearing listened to monosyllabic words at three levels in each of three levels of a masker shaped to match the speech spectrum. An additional low-level noise equated audibility by producing equivalent masked thresholds for all subjects. If word recognition was determined entirely by signal-to-noise ratio and was independent of overall speech and masker levels, scores at a given signal-to-noise ratio should remain constant with increasing level. Masked pure-tone thresholds measured in the speech-shaped maskers increased linearly with increasing masker level at lower frequencies but nonlinearly at higher frequencies, consistent with nonlinear growth of upward spread of masking that followed the peaks in the spectrum of the speech-shaped masker. Word recognition declined significantly with increasing level when signal-to-noise ratio was held constant which was attributed to nonlinear growth of masking and reduced "effective" signal-to-noise ratio at high speech-shaped masker levels, as indicated by audibility estimates based on the Articulation Index.  相似文献   

3.
To assess age-related differences in benefit from masker modulation, younger and older adults with normal hearing but not identical audiograms listened to nonsense syllables in each of two maskers: (1) a steady-state noise shaped to match the long-term spectrum of the speech, and (2) this same noise modulated by a 10-Hz square wave, resulting in an interrupted noise. An additional low-level broadband noise was always present which was shaped to produce equivalent masked thresholds for all subjects. This minimized differences in speech audibility due to differences in quiet thresholds among subjects. An additional goal was to determine if age-related differences in benefit from modulation could be explained by differences in thresholds measured in simultaneous and forward maskers. Accordingly, thresholds for 350-ms pure tones were measured in quiet and in each masker; thresholds for 20-ms signals in forward and simultaneous masking were also measured at selected signal frequencies. To determine if benefit from modulated maskers varied with masker spectrum and to provide a comparison with previous studies, a subgroup of younger subjects also listened in steady-state and interrupted noise that was not spectrally shaped. Articulation index (AI) values were computed and speech-recognition scores were predicted for steady-state and interrupted noise; predicted benefit from modulation was also determined. Masked thresholds of older subjects were slightly higher than those of younger subjects; larger age-related threshold differences were observed for short-duration than for long-duration signals. In steady-state noise, speech recognition for older subjects was poorer than for younger subjects, which was partially attributable to older subjects' slightly higher thresholds in these maskers. In interrupted noise, although predicted benefit was larger for older than younger subjects, scores improved more for younger than for older subjects, particularly at the higher noise level. This may be related to age-related increases in thresholds in steady-state noise and in forward masking, especially at higher frequencies. Benefit of interrupted maskers was larger for unshaped than for speech-shaped noise, consistent with AI predictions.  相似文献   

4.
This experiment assessed the benefits of suppression and the impact of reduced or absent suppression on speech recognition in noise. Psychophysical suppression was measured in forward masking using tonal maskers and suppressors and band limited noise maskers and suppressors. Subjects were 10 younger and 10 older adults with normal hearing, and 10 older adults with cochlear hearing loss. For younger subjects with normal hearing, suppression measured with noise maskers increased with masker level and was larger at 2.0 kHz than at 0.8 kHz. Less suppression was observed for older than younger subjects with normal hearing. There was little evidence of suppression for older subjects with cochlear hearing loss. Suppression measured with noise maskers and suppressors was larger in magnitude and more prevalent than suppression measured with tonal maskers and suppressors. The benefit of suppression to speech recognition in noise was assessed by obtaining scores for filtered consonant-vowel syllables as a function of the bandwidth of a forward masker. Speech-recognition scores in forward maskers should be higher than those in simultaneous maskers given that forward maskers are less effective than simultaneous maskers. If suppression also mitigated the effects of the forward masker and resulted in an improved signal-to-noise ratio, scores should decrease less in forward masking as forward-masker bandwidth increased, and differences between scores in forward and simultaneous maskers should increase, as was observed for younger subjects with normal hearing. Less or no benefit of suppression to speech recognition in noise was observed for older subjects with normal hearing or hearing loss. In general, as suppression measured with tonal signals increased, the combined benefit of forward masking and suppression to speech recognition in noise also increased.  相似文献   

5.
Word recognition in sentences with and without context was measured in young and aged subjects with normal but not identical audiograms. Benefit derived from context by older adults has been obscured, in part, by the confounding effect of even mildly elevated thresholds, especially as listening conditions vary in difficulty. This problem was addressed here by precisely controlling signal-to-noise ratio across conditions and by accounting for individual differences in signal-to-noise ratio. Pure-tone thresholds and word recognition were measured in quiet and threshold-shaped maskers that shifted quiet thresholds by 20 and 40 dB. Word recognition was measured at several speech levels in each condition. Threshold was defined as the speech level (or signal-to-noise ratio) corresponding to the 50 rau point on the psychometric function. As expected, thresholds and slopes of psychometric functions were different for sentences with context compared to those for sentences without context. These differences were equivalent for young and aged subjects. Individual differences in word recognition among all subjects, young and aged, were accounted for by individual differences in signal-to-noise ratio. With signal-to-noise ratio held constant, word recognition for all subjects remained constant or decreased only slightly as speech and noise levels increased. These results suggest that, given equivalent speech audibility, older and younger listeners derive equivalent benefit from context.  相似文献   

6.
Previous research has demonstrated reduced speech recognition when speech is presented at higher-than-normal levels (e.g., above conversational speech levels), particularly in the presence of speech-shaped background noise. Persons with hearing loss frequently listen to speech-in-noise at these levels through hearing aids, which incorporate multiple-channel, wide dynamic range compression. This study examined the interactive effects of signal-to-noise ratio (SNR), speech presentation level, and compression ratio on consonant recognition in noise. Nine subjects with normal hearing identified CV and VC nonsense syllables in a speech-shaped noise at two SNRs (0 and +6 dB), three presentation levels (65, 80, and 95 dB SPL) and four compression ratios (1:1, 2:1, 4:1, and 6:1). Stimuli were processed through a simulated three-channel, fast-acting, wide dynamic range compression hearing aid. Consonant recognition performance decreased as compression ratio increased and presentation level increased. Interaction effects were noted between SNR and compression ratio, as well as between presentation level and compression ratio. Performance decrements due to increases in compression ratio were larger at the better (+6 dB) SNR and at the lowest (65 dB SPL) presentation level. At higher levels (95 dB SPL), such as those experienced by persons with hearing loss, increasing compression ratio did not significantly affect speech intelligibility.  相似文献   

7.
Many competing noises in real environments are modulated or fluctuating in level. Listeners with normal hearing are able to take advantage of temporal gaps in fluctuating maskers. Listeners with sensorineural hearing loss show less benefit from modulated maskers. Cochlear implant users may be more adversely affected by modulated maskers because of their limited spectral resolution and by their reliance on envelope-based signal-processing strategies of implant processors. The current study evaluated cochlear implant users' ability to understand sentences in the presence of modulated speech-shaped noise. Normal-hearing listeners served as a comparison group. Listeners repeated IEEE sentences in quiet, steady noise, and modulated noise maskers. Maskers were presented at varying signal-to-noise ratios (SNRs) at six modulation rates varying from 1 to 32 Hz. Results suggested that normal-hearing listeners obtain significant release from masking from modulated maskers, especially at 8-Hz masker modulation frequency. In contrast, cochlear implant users experience very little release from masking from modulated maskers. The data suggest, in fact, that they may show negative effects of modulated maskers at syllabic modulation rates (2-4 Hz). Similar patterns of results were obtained from implant listeners using three different devices with different speech-processor strategies. The lack of release from masking occurs in implant listeners independent of their device characteristics, and may be attributable to the nature of implant processing strategies and/or the lack of spectral detail in processed stimuli.  相似文献   

8.
Regions in the cochlea with very few functioning inner hair cells and/or neurons are called "dead regions" (DRs). Previously, we measured the recognition of highpass-filtered nonsense syllables as a function of filter cutoff frequency for hearing-impaired people with and without low-frequency (apical) DRs [J. Acoust. Soc. Am. 122, 542-553 (2007)]. DRs were diagnosed using the TEN(HL) test, and psychophysical tuning curves were used to define the edge frequency (fe) more precisely. Stimuli were amplified differently for each ear, using the "Cambridge formula." The present study was similar, but the speech was presented in speech-shaped noise at a signal-to-noise ratio of 3 dB. For subjects with low-frequency hearing loss but without DRs, scores were high (65-80%) for low cutoff frequencies and worsened with increasing cutoff frequency above about 430 Hz. For subjects with low-frequency DRs, performance was poor (20-40%) for the lowest cutoff frequency, improved with increasing cutoff frequency up to about 0.56fe, and then worsened. As for speech in quiet, these results indicate that people with low-frequency DRs are able to make effective use of frequency components that fall in the range 0.56fe to fe, but that frequency components below 0.56fe have deleterious effects.  相似文献   

9.
These experiments examined how high presentation levels influence speech recognition for high- and low-frequency stimuli in noise. Normally hearing (NH) and hearing-impaired (HI) listeners were tested. In Experiment 1, high- and low-frequency bandwidths yielding 70%-correct word recognition in quiet were determined at levels associated with broadband speech at 75 dB SPL. In Experiment 2, broadband and band-limited sentences (based on passbands measured in Experiment 1) were presented at this level in speech-shaped noise filtered to the same frequency bandwidths as targets. Noise levels were adjusted to produce approximately 30%-correct word recognition. Frequency bandwidths and signal-to-noise ratios supporting criterion performance in Experiment 2 were tested at 75, 87.5, and 100 dB SPL in Experiment 3. Performance tended to decrease as levels increased. For NH listeners, this "rollover" effect was greater for high-frequency and broadband materials than for low-frequency stimuli. For HI listeners, the 75- to 87.5-dB increase improved signal audibility for high-frequency stimuli and rollover was not observed. However, the 87.5- to 100-dB increase produced qualitatively similar results for both groups: scores decreased most for high-frequency stimuli and least for low-frequency materials. Predictions of speech intelligibility by quantitative methods such as the Speech Intelligibility Index may be improved if rollover effects are modeled as frequency dependent.  相似文献   

10.
Upward spreading of masking, measured in terms of absolute masked threshold, is greater in hearing-impaired listeners than in listeners with normal hearing. The purpose of this study was to make further observations on upward-masked thresholds and speech recognition in noise in elderly listeners. Two age groups were used: One group consisted of listeners who were more than 60 years old, and the second group consisted of listeners who were less than 36 years old. Both groups had listeners with normal hearing as well as listeners with mild to moderate sensorineural loss. The masking paradigm consisted of a continuous low-pass-filtered (1000-Hz) noise, which was mixed with the output of a self-tracking, sweep-frequency Bekesy audiometer. Thresholds were measured in quiet and with maskers at 70 and 90 dB SPL. The upward-masked thresholds were similar for young and elderly hearing-impaired listeners. A few elderly listeners had lower upward-masked thresholds compared with the young control group; however, their on-frequency masked thresholds were nearly identical to the control group. A significant correlation was found between upward-masked thresholds and the Speech Perception in Noise (SPIN) test in elderly listeners.  相似文献   

11.
Tone thresholds and speech-reception thresholds were measured in 200 individuals (400 ears) with noise-induced hearing loss. The speech-reception thresholds were measured in a quiet condition and in noise with a speech spectrum at levels of 35, 50, 65, and 80 dBA. The tone audiograms could be described by three principal components: hearing loss in the regions above 3 kHz, from 1 to 3 kHz and below 1 kHz; the speech thresholds could be described by two components: speech reception in quiet and speech reception in noise at 50-80 dBA. Hearing loss above 1 kHz was related to speech reception in noise; hearing loss at and below 1 kHz to speech reception in quiet. The correlation between the speech thresholds in quiet and in noise was only R = 0.45. An adequate predictor of the speech threshold in noise, the primary factor in the hearing handicap, was the pure-tone average at 2 and 4 kHz (PTA2,4, R = 0.72). The minimum value of the prediction error for any tone-audiometric predictor of this speech threshold was 1.2 dB (standard deviation). The prediction could not be improved by taking into account the critical ratio for low-frequency noise nor by its upward spread of masking. The prediction error is due to measurement error and to a factor common to both ears. The latter factor is ascribed to cognitive skill in speech reception. Hearing loss above 10 to 15 dB HL (hearing level) already shows an effect on the speech threshold in noise, a noticeable handicap is found at PTA2,4 = 30 dB HL.  相似文献   

12.
Consonant recognition in quiet and in noise was investigated as a function of age for essentially normal hearing listeners 21-68 years old, using the nonsense syllable test (NST) [Resnick et al., J. Acoust. Soc. Am. Suppl. 1 58, S114 (1975)]. The subjects audited the materials in quiet and at S/N ratios of +10 and +5 dB at their most comfortable listening levels (MCLs). The MCLs approximated conversational speech levels and were not significantly different between the age groups. The effects of age group, S/N condition (quiet, S/N +10, S/N +5) and NST subsets, and the S/N condition X subset interaction were all significant. Interactions involving the age factor were nonsignificant. Confusion matrices were similar across age groups, including the directions of errors between the most frequently confused phonemes. Also, the older subjects experienced performance decrements on the same features that were least accurately recognized by the younger subjects. The findings suggest that essentially normal older persons listening in quiet and in noise experience decreased consonant recognition ability, but that the nature of their phoneme confusions is similar to that of younger individuals. Even though the older subjects met the same selection criteria as did younger ones, there was an expected shift upward in auditory thresholds with age within these limits. Sensitivity at 8000 Hz was correlated with NST scores in noise when controlling for age, but the correlation between performance in noise and age was nonsignificant when controlling for the 8000-Hz threshold. These associations seem to implicate the phenomena underlying the increased 8000-Hz thresholds in the speech recognition problems of the elderly, and appear to support the concept of peripheral auditory deterioration with aging even among those with essentially normal hearing.  相似文献   

13.
Chinese sentence recognition strongly relates to the reception of tonal information. For cochlear implant (CI) users with residual acoustic hearing, tonal information may be enhanced by restoring low-frequency acoustic cues in the nonimplanted ear. The present study investigated the contribution of low-frequency acoustic information to Chinese speech recognition in Mandarin-speaking normal-hearing subjects listening to acoustic simulations of bilaterally combined electric and acoustic hearing. Subjects listened to a 6-channel CI simulation in one ear and low-pass filtered speech in the other ear. Chinese tone, phoneme, and sentence recognition were measured in steady-state, speech-shaped noise, as a function of the cutoff frequency for low-pass filtered speech. Results showed that low-frequency acoustic information below 500 Hz contributed most strongly to tone recognition, while low-frequency acoustic information above 500 Hz contributed most strongly to phoneme recognition. For Chinese sentences, speech reception thresholds (SRTs) improved with increasing amounts of low-frequency acoustic information, and significantly improved when low-frequency acoustic information above 500 Hz was preserved. SRTs were not significantly affected by the degree of spectral overlap between the CI simulation and low-pass filtered speech. These results suggest that, for CI patients with residual acoustic hearing, preserving low-frequency acoustic information can improve Chinese speech recognition in noise.  相似文献   

14.
Recognition of speech stimuli consisting of monosyllabic words, sentences, and nonsense syllables was tested in normal subjects and in a subject with a low-frequency sensorineural hearing loss characterized by an absence of functioning sensory units in the apical region of the cochlea, as determined in a previous experiment [C. W. Turner, E. M. Burns, and D. A. Nelson, J. Acoust. Soc. Am. 73, 966-975 (1983)]. Performance of all subjects was close to 100% correct for all stimuli presented unfiltered at a moderate intensity level. When stimuli were low-pass filtered, performance of the hearing-impaired subject fell below that of the normals, but was still considerably above chance. A further diminution in the impaired subject's recognition of nonsense syllables resulted from the addition of a high-pass masking noise, indicating that his performance in the filtered quiet condition was attributable in large part to the contribution of sensory units in basal and midcochlear regions. Normals' performance was also somewhat decreased by the masker, suggesting that they also may have been extracting some low-frequency speech cues from responses of sensory units located in the base of the cochlea.  相似文献   

15.
Forward- and simultaneous-masked thresholds were measured at 0.5 and 2.0 kHz in bandpass maskers as a function of masker bandwidth and in a broadband masker with the goal of estimating psychophysical suppression. Suppression was operationally defined in two ways: (1) as a change in forward-masked threshold as a function of masker bandwidth, and (2) as a change in effective masker level with increased masker bandwidth, taking into account the nonlinear growth of forward masking. Subjects were younger adults with normal hearing and older adults with cochlear hearing loss. Thresholds decreased as a function of masker bandwidth in forward masking, which was attributed to effects of suppression; thresholds remained constant or increased slightly with increasing masker bandwidth in simultaneous masking. For subjects with normal hearing, slightly larger estimates of suppression were obtained at 2.0 kHz rather than at 0.5 kHz. For hearing-impaired subjects, suppression was reduced in regions of hearing loss. The magnitude of suppression was strongly correlated with the absolute threshold at the signal frequency, but did not vary with thresholds at frequencies remote from the signal. The results suggest that measuring forward-masked thresholds in bandlimited and broadband maskers may be an efficient psychophysical method for estimating suppression.  相似文献   

16.
Talkers change the way they speak in noisy conditions. For energetic maskers, speech production changes are relatively well-understood, but less is known about how informational maskers such as competing speech affect speech production. The current study examines the effect of energetic and informational maskers on speech production by talkers speaking alone or in pairs. Talkers produced speech in quiet and in backgrounds of speech-shaped noise, speech-modulated noise, and competing speech. Relative to quiet, speech output level and fundamental frequency increased and spectral tilt flattened in proportion to the energetic masking capacity of the background. In response to modulated backgrounds, talkers were able to reduce substantially the degree of temporal overlap with the noise, with greater reduction for the competing speech background. Reduction in foreground-background overlap can be expected to lead to a release from both energetic and informational masking for listeners. Passive changes in speech rate, mean pause length or pause distribution cannot explain the overlap reduction, which appears instead to result from a purposeful process of listening while speaking. Talkers appear to monitor the background and exploit upcoming pauses, a strategy which is particularly effective for backgrounds containing intelligible speech.  相似文献   

17.
This study investigated the effects of simulated cochlear-implant processing on speech reception in a variety of complex masking situations. Speech recognition was measured as a function of target-to-masker ratio, processing condition (4, 8, 24 channels, and unprocessed) and masker type (speech-shaped noise, amplitude-modulated speech-shaped noise, single male talker, and single female talker). The results showed that simulated implant processing was more detrimental to speech reception in fluctuating interference than in steady-state noise. Performance in the 24-channel processing condition was substantially poorer than in the unprocessed condition, despite the comparable representation of the spectral envelope. The detrimental effects of simulated implant processing in fluctuating maskers, even with large numbers of channels, may be due to the reduction in the pitch cues used in sound source segregation, which are normally carried by the peripherally resolved low-frequency harmonics and the temporal fine structure. The results suggest that using steady-state noise to test speech intelligibility may underestimate the difficulties experienced by cochlear-implant users in fluctuating acoustic backgrounds.  相似文献   

18.
Effects of age and mild hearing loss on speech recognition in noise   总被引:5,自引:0,他引:5  
Using an adaptive strategy, the effects of mild sensorineural hearing loss and adult listeners' chronological age on speech recognition in babble were evaluated. The signal-to-babble ratio required to achieve 50% recognition was measured for three speech materials presented at soft to loud conversational speech levels. Four groups of subjects were tested: (1) normal-hearing listeners less than 44 years of age, (2) subjects less than 44 years old with mild sensorineural hearing loss and excellent speech recognition in quiet, (3) normal-hearing listeners greater than 65 with normal hearing, and (4) subjects greater than 65 years old with mild hearing loss and excellent performance in quiet. Groups 1 and 3, and groups 2 and 4 were matched on the basis of pure-tone thresholds, and thresholds for each of the three speech materials presented in quiet. In addition, groups 1 and 2 were similar in terms of mean age and age range, as were groups 3 and 4. Differences in performance in noise as a function of age were observed for both normal-hearing and hearing-impaired listeners despite equivalent performance in quiet. Subjects with mild hearing loss performed significantly worse than their normal-hearing counterparts. These results and their implications are discussed.  相似文献   

19.
Simultaneous, on-frequency masking is commonly assumed to be linear with increasing noise intensity. However, some evidence suggests that, expressed in terms of signal-to-noise ratio changes with background level changes, masking slopes can vary from 0 dB/dB. These results and evidence from a large sample of subjects with normal and impaired hearing demonstrate level-dependent changes in masking, large individual differences in masking among subjects with similar thresholds in quiet, and significant correlations of masking slope with other estimates of auditory function measured in the same backgrounds.  相似文献   

20.
The effects of intensity on monosyllabic word recognition were studied in adults with normal hearing and mild-to-moderate sensorineural hearing loss. The stimuli were bandlimited NU#6 word lists presented in quiet and talker-spectrum-matched noise. Speech levels ranged from 64 to 99 dB SPL and S/N ratios from 28 to -4 dB. In quiet, the performance of normal-hearing subjects remained essentially constant in noise, at a fixed S/N ratio, it decreased as a linear function of speech level. Hearing-impaired subjects performed like normal-hearing subjects tested in noise when the data were corrected for the effects of audibility loss. From these and other results, it was concluded that: (1) speech intelligibility in noise decreases when speech levels exceed 69 dB SPL and the S/N ratio remains constant; (2) the effects of speech and noise level are synergistic; (3) the deterioration in intelligibility can be modeled as a relative increase in the effective masking level; (4) normal-hearing and hearing-impaired subjects are affected similarly by increased signal level when differences in speech audibility are considered; (5) the negative effects of increasing speech and noise levels on speech recognition are similar for all adult subjects, at least up to 80 years; and (6) the effective dynamic range of speech may be larger than the commonly assumed value of 30 dB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号