首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Treatment of bis(cyanamide) [M(N≡CNEt2)2L4](BPh4)2 and bis(cyanoguanidine) [M{N≡CN(H)C(NH2)=NH}2L4](BPh4)2 complexes [M = Fe, Ru, Os; L = P(OEt)3] with an excess of amine RNH2 (R = nPr, iPr) affords mixed‐ligand complexes with cyanamide and amine [M(NH2R)(N≡CNEt2)L4](BPh4)2 ( 1a – 5a ) and [M(NH2R){N≡CN(H)C(NH2)=NH}L4](BPh4)2 ( 1b , 2b ). The complexes were characterized by spectroscopy and X‐ray crystal structure determination of [M(NH2iPr)(N≡CNEt2){P(OEt)3}4](BPh4)2 [M = Ru ( 3a ), Os ( 5a )].  相似文献   

2.
Chloride abstraction from [(R,R)‐(iPrDuPhos)Co(μ‐Cl)]2 with NaBArF4 (BArF4=B[(3,5‐(CF3)2)C6H3]4) in the presence of dienes, such as 1,5‐cyclooctadiene (COD) or norbornadiene (NBD), yielded long sought‐after cationic bis(phosphine) cobalt complexes, [(R,R)‐(iPrDuPhos)Co(η22‐diene)][BArF4]. The COD complex proved substitutionally labile undergoing diene substitution with tetrahydrofuran, NBD, or arenes. The resulting 18‐electron, cationic cobalt(I) arene complexes, as well as the [(R,R)‐(iPrDuPhos)Co(diene)][BArF4] derivatives, proved to be highly active and enantioselective precatalysts for asymmetric alkene hydrogenation. A cobalt–substrate complex, [(R,R)‐(iPrDuPhos)Co(MAA)][BArF4] (MAA=methyl 2‐acetamidoacrylate) was crystallographically characterized as the opposite diastereomer to that expected for productive hydrogenation demonstrating a Curtin–Hammett kinetic regime similar to rhodium catalysis.  相似文献   

3.
以2,2′-二氨基二苯醚和4-吡啶异氰酸酯反应合成了含吡啶二脲配体(L),并分别与HgCl_2和Cd(ClO_4)2进行了配位反应,得到2个配位聚合物{[Hg(L)Cl_2]·2DMF}_n(1)和{[Cd(L)_2(H_2O)_2](ClO_4)_2·4DMF·2H_2O·2CH_3OH}_n(2),采用1H NMR、MS、FTIR和元素分析等对化合物L进行了表征。通过X射线单晶衍射技术测定了配体及2个配合物的单晶结构,结构解析表明,2个配合物均为一维链状结构。进一步考察了2个配合物的热稳定性及其对甲醇蒸气的吸附性能。  相似文献   

4.
The synthesis, X‐ray crystal structures, electrochemical, and spectroscopic studies of a series of hexanuclear gold(I) μ3‐ferrocenylmethylphosphido complexes stabilized by bridging phosphine ligands, [Au6(P?P)n(Fc‐CH2‐P)2][PF6]2 (n=3, P?P=dppm (bis(diphenylphosphino)methane) ( 1 ), dppe (1,2‐bis(diphenylphosphino)ethane) ( 2 ), dppp (1,3‐bis(diphenylphosphino)propane) ( 3 ), Ph2PN(C3H7)‐PPh2 ( 4 ), Ph2PN(Ph‐CH3p)PPh2 ( 5 ), dppf (1,1′‐bis(diphenylphosphino)ferrocene) ( 6 ); n=2, P?P=dpepp (bis(2‐diphenylphosphinoethyl)phenylphosphine) ( 7 )), as platforms for multiple redox‐active ferrocenyl units, are reported. The investigation of the structural changes of the clusters has been probed by introducing different bridging phosphine ligands. This class of gold(I) μ3‐ferrocenylmethylphosphido complexes has been found to exhibit one reversible oxidation couple, suggestive of the absence of electronic communication between the ferrocene units through the Au6P2 cluster core, providing an understanding of the electronic properties of the hexanuclear AuI cluster linkage. The present complexes also serve as an ideal system for the design of multi‐electron reservoir and molecular battery systems.  相似文献   

5.
The reactions of bis(anilino)phosphine oxide (C 6 H 5 NH) 2 P(O) H with (C 5 H 5 )2TiCl2 or Me2SiCl2 in a 1:1 molar ratio in THF results in the isolation of new phosph(V)azane complexes (C5H5)2Ti[(N C6H5)2P(O)H] (1) or Cl 2 Si[(N C 6 H 5 )2P(O)H] (2), respectively. In these reactions, HCl or CH4 elimination occurs and N-Ti or N-Si bonds form directly between a bis(anilino)phosphine oxide ligand and organotitanium or organosilicon compounds. The products(1) and (2) have been fully characterized by elemental analysis as well as 1 H, 31 P, 29 Si NMR, and IR spectroscopy.  相似文献   

6.
Tetradentate Schiff-base carboxylate-containing ligands, bis(2-pyridylmethyl)amino-5-valeric acid (Hpmva) and bis(2-pyridylmethyl)amino-6-caproic acid (Hpmca), react with copper(II) perchlorate to give rise to the carboxylated bridged chain complexes {[Cu(μ-pmva)(H2O)](ClO4)}n (1) and {[Cu(μ-pmca)(H2O)](ClO4)}n (2). These complexes have been characterized by X-ray crystallography, spectroscopic, and variable-temperature magnetic susceptibility measurements. In 1 and 2, each of the copper(II) ions exhibit CuN3O2 coordination environments with the three nitrogen atoms of the ligand and one oxygen atom belonging to the carboxylate group of an adjacent molecule occupying the basal position and a water molecule coordinated in the axial position. The electronic spectra of the complexes are significantly affected by the coordination geometry. Magnetic susceptibility measurements indicate that complexes exhibit very weak ferromagnetic interactions.  相似文献   

7.
Cadmium(II) complexes, catena-poly[bis(thiocyanato-κN)bis(N-methylthiourea)cadmium(II)], [Cd(Metu)2(NCS)2]n (1) and dicyanidobis(N-methylthiourea)cadmium(II), [Cd(Metu)2(CN)2] (2) were prepared and their structures were determined by single crystal X-ray analysis. In 1, the cadmium(II) ion is bound to four sulfur atoms of bridging Metu ligands and two nitrogen atoms of thiocyanate adopting a distorted octahedral environment. In 2, the geometry around cadmium is distorted tetrahedral attained by two cyanide ions and two methylthiourea molecules bound through the sulfur atoms. The crystal structures of both complexes show intra and intermolecular hydrogen bonding interactions. The complexes were also characterized by IR and NMR spectroscopy and the spectroscopic data were discussed in terms of the nature of bonding.  相似文献   

8.
The syntheses and structures of two mixed‐ligand complexes of platinum(II) with deprotonated oxopurine bases and tri­phenyl­phosphine are reported, namely the theophyllinate complex cis‐bis(1,2,3,6‐tetra­hydro‐1,3‐di­methyl­purine‐2,6‐dionato‐κN7)­bis(tri­phenyl­phosphine‐κP)­platinum(II), [Pt(C7H7N4O2)2(C18H15P)2], (I), and the theobrominate complex cis‐chloro(1,2,3,6‐tetrahydro‐3,7‐dimethylpurine‐2,6‐dionato‐κN1)­bis(tri­phenyl­phosphine‐κP)­platinum(II) ethanol hemisolvate, [PtCl(C7H7N4O2)(C18H15P)2]·0.5C2H5OH, (II). In (I), the coordination geometry of Pt is square planar, formed by the two coordinating N atoms of the theophyl­linate anions in a cis arrangement and two P atoms from the tri­phenyl­phosphine groups. In (II), there are two crystallographically independent mol­ecules. They both exhibit a square‐planar coordination geometry around Pt involving one Cl atom, the coordinating N atom of the theobrominate anion and two P atoms from the tri­phenyl­phosphine groups. The two tri­phenyl­phosphine groups are arranged in a cis configuration in both structures. The heterocyclic rings are rotated with respect to the coordination plane of the metal by 82.99 (8) and 88.09 (8)° in complex (I), and by 85.91 (16) and 88.14 (18)° in complex (II). Both structures are stabilized by intramolecular stacking interactions involving the purine rings and the phenyl rings of adjacent tri­phenyl­phosphine moieties.  相似文献   

9.
The two dinuclear IrI complexes [Ir2(μ‐Cl)2 {(R)‐(S)‐PPF‐PPh2}2] ( 1 ; (R)‐(S)‐PPF‐PPh2=(S)‐1‐(diphenylphosphino)‐2‐[(R)‐1‐(diphenylphosphino)ethyl]ferrocene and [Ir2(μ‐Cl)2{(R)‐binap}2] ( 3 ; (R)‐binap=(R)‐[1,1′‐binaphthalene]‐2,2′‐diylbis[diphenylphosphine]) smoothly react with 4 equiv. of the lithium salt of aniline to afford the new bis(anilido)iridate(I) (=bis(benzenaminato)iridate(1‐)) complexes Li[Ir(NHPh)2{(R)‐(S)‐PPF‐PPh2}] ( 4 ) and Li[Ir(NHPh)2{(R)‐binap}] ( 5 ), respectively. The anionic complexes 4 and 5 react upon protonolysis to give the dinuclear aminato‐bridged derivatives [Ir2(μ‐NHPh)2{(R)‐(S)‐PPF‐PPh2}2] ( 6 ) and [Ir2(μ‐NHPh)2{(R)‐binap}2] ( 7 ), which were characterized by X‐ray crystallography. None of the new complexes 4 – 7 shows catalytic activity in the hydroamination of olefins.  相似文献   

10.
Three new coordination polymers, [Zn(PBDC)(bbbm)0.5]n ( 1 ), [Co(PBDC)(bbbm)]n ( 2 ), and [Cd(PBDC)(bbbm)]n ( 3 ) were prepared via hydrothermal reactions of different metal(II) nitrates with flexible 1,3‐bis(4‐phenoxy)benzenedicarboxylic acid (H2L) and 1,1‐(1,4‐butanediyl)bis(benzimidazole) ligand. All these complexes were fully characterized by elemental analysis, FT‐IR, thermogravimetric analysis (TGA), powder X‐ray diffraction, and single‐crystal X‐ray diffraction. Structure analyses revealed that complex 1 has a 2D→2D twofold interpenetrating framework simplified by a 4‐connected sql net with point symbol (44.62), whereas complexes 2 and 3 are isostructural and exhibit a 2D→2D twofold interpenetrating framework rationalized as a three‐connected hcb net with point symbol (63). Complexes 1 – 3 further expand to 3D supramolecular structures through non‐covalent C–H ··· O interactions. Additionally, the luminescent and magnetic properties of some of these complexes were studied. Complex 3 presents ideal photoluminescent behavior, whereas complex 2 shows antiferromagnetic coupling between the central CoII ions, suggesting its latent application in magnetic material.  相似文献   

11.
王宏社  赵立芳 《有机化学》2005,25(7):869-871
二(三氟甲基磺酰)亚胺铕(III) [Eu(NTf2)3, Tf=SO2CF3]作催化剂, 吲哚与醛(酮)在室温下发生亲电取代反应合成了一系列二吲哚基甲烷, 产率85%~98%. 该法反应条件温和、时间短、催化剂用量少且可以回收重复使用.  相似文献   

12.
Heteroleptic Diorganylzinc Compounds with a Bis(trimethylsilyl)phosphido Substituent Dialkylzinc ZnR2 (Me, Et, iso-Pr, nBu, tBu, CH2SiMe3) reacts with one equivalent of bis(trimethylsilyl)-phosphine in carbohydrates to the heteroleptic compounds RZnP(SiMe3)2; dependent from the steric demand of the alkyl group R the derivatives are dimeric or trimeric in solution as well as in the solid state. Monomeric bis(trimethylsilyl)phosphido-tris(trimethylsilyl)methylzinc yields from the reaction of lithium tris(trimethylsilyl)methanide and lithium bis(trimethylsilyl)phosphide with zinc(II) chloride. Bis(trimethylsilyl)phosphido-methylzinc crystallizes in the orthorhombic space group P212121 with {a = 1 007.6(1); b = 1 872.3(3); c = 2 231.0(4) pm; Z = 4} as a trimeric molecule with a central cyclic Zn3P3 moiety in the twist-boat conformation. Bis(trimethylsilyl)phosphido-n-butylzinc, that crystallizes in the orthorombic space group Pben with {a = 1 261.7(2); b = 2 253.0(4); c = 1 798.9(2) pm; Z = 4}, shows a simular central Zn3P3 fragment. The sterically more demanding trimethylsilylmethyl substituent leads to the formation of a dimeric molecule of bis(trimethylsilyl)phosphido-trimethylsilylmethylzinc {monoklin, P21/c; a = 907.2(4); b = 2 079.8(8), c = 1 070,2(3) pm; β = 103,48(1)°; Z = 2}. Bis(trimethylsilyl)phosphido-iso-propylzinc shows in solution a temperature-dependent equilibrium of the dimeric and trimeric species; the crystalline state contains a 1:1 mixture of these two oligomers {orthorhombisch; Pbca; a = 1 859.0(3); b = 2 470.9(2); c = 3 450.7(3) pm; Z = 8}. The Zn? P bond lengths vary in a narrow range around 239 pm, the Zn? C distances were found between 196 and 203 pm.  相似文献   

13.
New bis(oxamato)palladate(II) complexes, [Pd(H2O)4][Pd(2,6-Me2pma)2]·2H2O (1), (n-Bu4N)2[Pd(2,6-Me2pma)2]·2H2O (2a), and (n-Bu4N)2[Pd(2,6-Me2pma)2]·2CHCl3 (2b) (2,6-Me2pma = N-2,6-dimethylphenyoxamate and n-Bu4N+ = tetra-n-butylammonium), have been synthesized and the structures of 1 and 2b characterized by single-crystal X-ray diffraction. Complex 1 is a double salt constituted by tetraaquapalladium(II) cations and bis(oxamato)palladate(II) anions interlinked by hydrogen bonds. The palladium(II) ions in 1 are four-coordinate with two oxygens and two nitrogens from two fully deprotonated oxamate ligands (anion), and four water molecules (cation) building centrosymmetric square-planar surroundings. Centrosymmetric bis(oxamato)palladate(II) anions occur in 2b as in 1, the charge balance in this compound being ensured by the bulky n-Bu4N+. The catalytic role of 1 and 2a for the Suzuki reaction has been investigated by using a series of aryl iodide/bromide derivatives in the conventional organic medium dimethylformamide. The tetraaquapalladium(II) unit in 1 appears to be active in the catalytic Suzuki cross-coupling reactions, but it readily decomposes to inactive palladium black.  相似文献   

14.
Taking advantage of an improved synthesis of [Ti(η6‐C6H6)2], we report here the first examples of ansa‐bridged bis(benzene) titanium complexes. Deprotonation of [Ti(η6‐C6H6)2] with nBuLi in the presence of N,N,N′,N′′,N′′‐pentamethyldiethylenetriamine (pmdta) leads to the corresponding 1,1′‐dilithio salt [Ti(η6‐C6H5Li)2] ? pmdta that enables the preparation of the first one‐ and two‐atom‐bridged complexes by simple salt metathesis. The ansa complexes were fully characterized (NMR spectroscopy, UV/Vis spectroscopy, elemental analysis, and X‐ray crystallography) and further studied electrochemically and computationally. Moreover, [Ti(η6‐C6H6)2] is found to react with the Lewis base 1,3‐dimethylimidazole‐2‐ylidene (IMe) to give the bent sandwich complex [Ti(η6‐C6H6)2(IMe)].  相似文献   

15.
A series of ABx‐type triarylphosphine oxide monomers, bis‐(4‐fluorophenyl)‐(4‐hydroxyphenyl)phosphine oxide ( 4a ), bis‐(3,4‐difluorophenyl)‐(4‐hydroxyphenyl)phosphine oxide ( 4b ), and 4‐hydroxyphenyl‐bis‐(3,4,5‐trifluorophenyl)phosphine oxide ( 4c ) were prepared, characterized, and polymerized under nucleophilic aromatic substitution conditions [N‐methylpyrrolidone (NMP), K2CO3] to provide the corresponding hyperbranched poly(arylene ether phosphine oxide)s with number‐average molecular weights ranging from 9200 to 14,600 Da. NMR spectroscopic analysis indicated the presence of highly branched products with an approximate degree of branching of 0.57. The polymers were soluble in a variety of typical organic solvents and displayed excellent thermal stability. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1456–1467, 2002  相似文献   

16.
Under hydrothermal conditions, three new AgI coordination polymers, [Ag(L1)(Hmip)]n ( 1 ), [Ag(L2)0.5(ndc)0.5]n ( 2 ), and {[Ag(L3)0.5(Htbi)] · 0.25H2O}n ( 3 ) [H2mip = 5‐methylisophthalic acid, L1 = 1,4‐bis(2‐methylbenzimidazol‐1‐ylmethyl)benzene, H2ndc = 2,6‐naphthalenedicarboxylic acid, L2 = 1,3‐bis(2‐methylbenzimidazol‐1‐ylmethyl)benzene, H2tbi = 5‐tert‐butyl isophthalic acid, L3 = 1,4‐bis(5,6‐dimethylbenzimidazole)butane] were synthesized by employing flexible bis(benzimidazole) and dicarboxylic acid ligands. Polymer 1 displays a 2D 4‐connected 4L2 underlying net topology with the point symbol of (65.8) in standard representation. Compound 2 possesses a 2D uninodal 4‐connected Shubnikov tetragonal plane net (sql) based on a dinuclear AgI clusters with the point symbol (44.62), which is further extended into a 3D supramolecular framework by π–π interactions. Compound 3 possesses dinuclear molecular complex groups, which form chains by weak Ag–O (2.6 Å) coordination bonds, and further assembled into a 2D supramolecular layer by hydrogen bonds and π–π stacking interactions. These complexes exhibit intense fluorescent emissions in solid state. UV/Vis diffuse reflection spectra and the excellent catalytic activity for the degradation of the congo red azo dye in a Fenton‐like process are discussed.  相似文献   

17.
Abstract

It was found that each of the tetrakis(n-alkyldithiolato)dinickel(II), (Cn-DTA)4-Ni2, complexes where n-alkyl is n-pentyl through n-dodecyl, exhibits a broken-fan texture on cooling from an isotropic liquid, and that the phase gave a characteristic lamella structure X-ray diffraction powder pattern. Furthermore, the infrared spectrum of this phase is more similar to that of the isotropic liquid than that of the crystal. Therefore, the phase can be described as a monotropic lamella mesophase. Interestingly, each of the complexes of bis(n-alkylxanthato)nickel(II), (Cn-Xan)2Ni, (n = 5, 7, 9, 11) exhibits double (triple) melting behavior via the isotropic liquid, whereas each of the complexes of (Cn-Xan)2Ni (n = 4, 6, 8, 10, 12) shows ordinary single melting behavior. Such unique double melting accompanied by an even-odd effect appears to be the first example of this in the long chain substituted compounds. Each of the complexes of (Cn-Xan)2 Ni (n = 9, 11, 12) has a monotropic lamella mesophase exhibiting a large broken fan texture.  相似文献   

18.
Cobalt(I) carbonyl complexes of formula [Co(CO)n(P)5?n]ClO4 (n = 1, 2, 3; P = secondary or tertiary phosphine) have been prepared by reaction of CO under ambient conditions with Co(ClO4)2 · 6H2O and phosphine in isopropyl alcohol. The chemical and spectroscopic properties of these complexes are described and the stoichiometry and mechanism of the carbonylation reaction discussed.  相似文献   

19.
Two highly fluorinated bipyridine derivatives, (4,4′‐bis(RfCH2OCH2)‐2,2′‐bpy) {Rf = n‐C10F21 ( 1a ), n‐C10F23 ( 1b )}, have been synthesized starting from 4,4′‐bis(BrCH2)‐2,2′‐bpy and the corresponding fluorinated alkoxides. The fluorine contents of ligands 1a‐b are 62.3% and 63.3%, respectively, both being white solids, virtually insoluble in CH2Cl2 or DMF and highly fluorophilic with a partition ratio between DMF and n‐C8F18 less than 1:1000. The reaction of ligands 1a‐b with [Pd(CH3CN)2Cl2] results in novel Pd complexes [PdCl2(4,4′‐bis‐(RfCH2OCH2)‐2,2′‐bpy)] where Rf = n‐C10F21 ( 2a ), n‐C10F23 ( 2b ), respectively. The Pd complexes 2a‐b are pale yellow solids, soluble only in fluorinated solvents. The Pd complexes 2a‐b have been satisfactorily tested for Mizoroki‐Heck arylation under fluorous biphasic catalysis conditions in that the Pd complexes 2a‐b are easily recovered and maintain good catalytic activity after 8 consecutive cycles (> 90% yield). The TGA studies indicate that the Pd complexes 2a‐b are thermally stable up to 300 °C.  相似文献   

20.
A series of bis(σ)-borane complexes of Group 6 transition metals were prepared by direct dihydroborane coordination to the metal center. Reaction of [M(CO)3(PCy3)2] and two dihydroboranes [DurBH2] and [(Me3Si)2NBH2] (Dur=2,3,5,6-Me4C6H) yielded bis(σ)-borane complexes fac-[M(CO)3(PCy3){η2-(H2BR)}] (R=Dur; 1 : M=Cr, 2 : M=W; R=N(SiMe3)2; 3 : M=Cr, 4 : M=W). In the case of molybdenum, we have isolated an arene complex ( 5 ) with [DurBH2] in which the Dur group acts as a η6-bound ligand, and with [(Me3Si)2NBH2] a similar bis(σ)-borane complex was isolated, cis,trans-[Mo(CO)2(PCy3)22-(H2BN(SiMe3)2}] ( 6 ), with a different pattern of auxiliary ligands. The complexes were investigated by multinuclear NMR spectroscopy, mass spectrometry, X-ray diffraction analysis, and computational methods. Quantum theory of atoms in molecules (QTAIM) calculations demonstrated that the borane complexes may be described as pure bis(σ)-borane complexes rather than elongated or stretched examples given that the calculations do not show the presence of a ring-critical point (RCP) at the ring formed by the interactions of the B−H with metal center.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号