首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Variation of the chemical composition of ternary CdS1−xSex nanocrystals grown in borosilicate glass depending on the thermal treatment is studied by resonant Raman spectroscopy. It is shown that only for the nanocrystals with roughly equal content of substitutive S and Se chalcogen atoms (0.4<x<0.6) the nanocrystal composition is independent of the thermal treatment parameters. In other cases an increase of the thermal treatment temperature (625–700 °C) and duration (2–12 h) results in a considerable increase of the predominant chalcogen content in the nanocrystals.  相似文献   

2.
Applying both template and Si cap technology, we achieved the epitaxial growth of CoSi2 directly on Si(1 0 0) substrate by rapid thermal annealing (RTA). The crystal quality of CoSi2 film is found to be significantly dependent on the Si cap thickness. In our work, a good-quality CoSi2 film with a minimum of χmin~11.6% and 3.3 Ω/square was obtained as a 15 nm Co with a subsequent 15 nm Si cap layer is deposited on an oxide-mediated CoSi2 template and followed by an anneal at 1050 °C under N2 protection; whereas too thin or thick Si cap layer will deteriorate the crystalline quality of CoSi2. These experimental results are discussed in combination with the simulation of Rutherford backscattering spectroscopy and X-ray reflectivity.  相似文献   

3.
Nonpolar (1 1–2 0) a-plane GaN films have been grown using the multi-buffer layer technique on (1–1 0 2) r-plane sapphire substrates. In order to obtain epitaxial a-plane GaN films, optimized growth condition of the multi-buffer layer was investigated using atomic force microscopy, high resolution X-ray diffraction, and transmission electron microscopy measurements. The experimental results showed that the growth conditions of nucleation layer and three-dimensional growth layer significantly affect the crystal quality of subsequently grown a-plane GaN films. At the optimized growth conditions, omega full-width at half maximum values of (11–20) X-ray rocking curve along c- and m-axes were 430 and 530 arcsec, respectively. From the results of transmission electron microscopy, it was suggested that the high crystal quality of the a-plane GaN film can be obtained from dislocation bending and annihilation by controlling of the island growth mode.  相似文献   

4.
α-Si3N4 nanowires, β-SiC nanowires and SiO2 amorphous nanowires are synthesized via the direct current arc discharge method with a mixture of silicon, activated carbon and silicon dioxide as the precursor. The α-Si3N4 nanowires, β-SiC nanowires and SiO2 amorphous nanowires are about 50–200 nm in stem diameter and 10–100 μm in length. α-Si3N4 nanowires and β-SiC nanowires consist of a solid single-crystalline core along the [0 0 1] and [1 1 1] directions, respectively, wrapped within an amorphous SiOx layer. The direct current arc plasma-assisted self-catalytic vapor–solid and/or vapor–liquid–solid (VLS) growth processes are proposed as the growth mechanism of the nanowires.  相似文献   

5.
The growth of C60 nanowhiskers (C60NWs) prepared by a modified liquid–liquid interfacial precipitation method is investigated, focusing on the effect of solvent ratio and water content in the C60–toluene–isopropyl alcohol (IPA) solution system. The precipitation of C60NWs was markedly influenced by the solvent ratio of toluene to IPA, and the C60NWs were found to grow longer above a critical diameter (Dc), which depends on the solvent ratio. The addition of a small amount of H2O to the C60–toluene–IPA solution promoted the growth of C60NWs. This catalytic effect of water on the growth of C60NWs was confirmed also by the experiment using heavy water (D2O) and by the decrease of growth activation energy of C60NWs with increase of H2O content in the C60–toluene–IPA solution.  相似文献   

6.
The present article reports the growth of single crystals of a complex Orthonitroaniline with picric acid (2[C6H6N2O2]·C6H2(NO2)3OH) (ONAP) by solution growth (slow evaporation) method at room temperature. Single crystal XRD, UV–vis spectral analysis and TGA/DTA studies were carried out. FT-IR and Raman spectra were recorded to explore information of the functional groups. The high-resolution X-ray diffraction curve reveals the internal structural low angle boundaries. The PL spectrum of the title compound shows green emission. Dielectric behaviour was investigated at 33 and 70 °C. The dipole moment and first-order hyperpolarizability (β) values were evaluated by using Gaussian 98 W software package with the help of B3LYP the density functional theory (DFT) method. The possible modes of vibrations are theoretically predicted by factor group analysis. The mechanical stability of the grown crystal was tested with Vicker’s microhardness tester and the work hardening coefficient of the grown material was estimated.  相似文献   

7.
Wide band-gap BeZnO layers were grown on Al2O3 (0 0 0 1) substrate using radio-frequency magnetron co-sputtering. The rate of BexZn1−xO crystallized as a hexagonal structure was x=0.2. From the X-ray photoelectron spectroscopy measurement, the O–Zn bonds relating the crystal structure and the Be–O bonds related to the deviation of the stoichiometry in the BeZnO layer were caught at 530.4 and 531.7 eV in the O 1s spectrum, respectively. Thus, the observance on the Be 1s peak of 113.2 eV associated with the bonding Be–O indicates that the sputtered Be atoms are substituted for the host-lattice site in ZnO. This Be–O bonding shows a relatively low intense and broadening spectrum caused by large fluctuation of Be content in the BeZnO layer. From the photoluminescence and transmittance measurement, the free exciton and the neutral donor-bound exciton (D0, X) emissions were observed at 3.7692 and 3.7313 eV, respectively, and an average transmittance rate over 95% was achieved in a wide ultraviolet (UV)–visible region. Also, the binding energy for the (D0, X) emission was extracted to be 37.9 meV. Through the wide band-gap material BeZnO, we may open some possibilities for fabricating a ZnO-based UV light-emitting diode to be utilized as a barrier layer comprised of the ZnO/BeZnO quantum well structure and/or an UV light emitting material itself.  相似文献   

8.
The work reported here involved a study of the growth kinetics of V2O5nH2O nanostructures under hydrothermal conditions. The coarsening process of V2O5nH2O nanoribbons was followed by subjecting the as-prepared suspensions to hydrothermal treatments at 80 °C for periods ranging from 0 to 7200 min. X-ray diffraction (XRD) confirms that the hydrothermal treatments at 80 °C caused no significant modification of the long-range order structure of samples subjected to different periods of hydrothermal treatment. Field emission scanning transmission electron microscope (FE-STEM) was used to analyze the morphology and width distribution of the nanostructures. The results indicated that the crystal growth mechanism in the [1 0 0] direction of vanadium pentoxide 1D nanostructure under hydrothermal conditions is well described by the oriented attachment (OA) mechanism. This evidence was supported by HRTEM images showing the existence of defects at the interface between nanostructures, which is characteristic of the oriented attachment (OA) mechanism.  相似文献   

9.
Hetero-epitaxial VO2/TiO2 bilayers were synthesized on Al2O3 substrates by using pulsed laser deposition, and their physical properties with the changes of oxygen pressure and the substrate orientation were investigated. A metal–insulator transition of the VO2 was observed only in a narrow oxygen pressure range of 5–20 mTorr. As the oxygen pressure increased, X-ray diffraction peak for the (2 0 0)VO2 shifted to a lower 2θ position, while the metal–insulator transition temperature (TMI) decreased by ∼7 K. On the other hand, TMI was largely varied with substrate orientation. The (2 0 0)VO2/TiO2 on the c-plane sapphire showed the highest TMI of about 350 K, while the (0 0 2)VO2/TiO2 on the m-plane sapphire displayed the lowest TMI of about 310 K. The (1 0 1)VO2/TiO2 on the r-plane and the a-plane exhibited TMI∼340 and 330 K, respectively. The observed variations of TMI with the oxygen pressure and substrate orientation were presumably due to the change in oxygen content of the VO2 layer and/or in lattice strain.  相似文献   

10.
CuInSe2 (CIS) chalcopyrite thin films were prepared using a low-cost, non-vacuum doctor-blade coating and the thermal annealing method. An acetone-based precursor solution containing copper chloride, indium chloride, selenium chloride, and an organic binder was deposited onto a Mo-sputtered soda lime glass substrate using a doctor-blade coating method. After coating, the precursor films were annealed in a quartz tube furnace under low vacuum without the use of a Se atmosphere or reduction conditions. Evolution of the morphology, crystal structure, and thermal decomposition behavior of the films was analyzed by X-ray diffraction, scanning electron microscopy, and thermogravimetric analysis, and the film formation mechanism was suggested. The as-deposited precursor film gradually decomposed with increase in temperature and formed Cu2−xSe and In2Se3 nuclei on the surface of the film. Incorporation of Cu2−xSe with In2Se3 yielded a chalcopyrite CIS phase, which crystallized on annealing above 400 °C. The obtained CIS film showed low-resistive ohmic behavior with a Mo electrode and a high absorption efficiency for visible–infrared (IR) light, making it suitable for use in photovoltaic applications.  相似文献   

11.
As described by Kutoglu (1976 [16]), single crystals of As4S4 (II) phase have been grown using a new two-step synthesis that drastically increases the reproducibility that is attainable in synthetic experiments. First, through photo-induced phase transformation, pararealgar powder is prepared as a precursor instead of AsS melt. Then it is dissolved and recrystallized from CS2 solvent. Results show that single crystals of the As4S4 (II) phase were obtained reproducibly through the dissolution–recrystallization process. Single crystals of As4S4 (II) obtained using this method were translucent and showed a uniform yellow-orange color. The crystal exhibits a platelet-like shape as a thin film with well-developed faces (0 1 0) and (0 1¯ 0). The grown crystals are as large as 0.50×0.50×0.01 mm. They were characterized using powder and single crystal X-ray diffraction techniques to confirm the phase identification and the lattice parameters. The As4S4 (II) phase crystallizes in monoclinic system with cell parameters a=11.202(4) Å, b=9.954(4) Å, c=7.142(4) Å, β=92.81(4)°, V=795.4(6) Å3, which shows good agreement with the former value. Raman spectroscopic studies elucidated the behavior of the substance and the relation among phases of tetra-arsenic tetrasulfide.  相似文献   

12.
The thermal stability of ∼200-nm-thick InGaN thin films on GaN was investigated using isothermal and isochronal post-growth anneals. The InxGa1−xN films (x=0.08–0.18) were annealed in N2 at 600–1000 °C for 15–60 min, and the resulting film degradation was monitored using X-ray diffraction (XRD) and photoluminescence (PL) measurements. As expected, films with higher indium concentration showed more evidence for decomposition than the samples with lower indium concentration. Also for each alloy composition, decreases in the PL intensity were observed starting at much lower temperatures compared to decreases in the XRD intensity. This difference in sensitivity of the PL and XRD techniques to the InGaN decomposition suggest that defects that quench luminescence are generated prior to the onset of structural decomposition. For the higher indium concentration films, the bulk decomposition proceeds by forming metallic indium and gallium regions as observed by XRD. For the 18% indium concentration film, measurement of the temperature-dependent InGaN decomposition yields an activation energy, EA, of 0.87±0.07 eV, which is similar to the EA for bulk InN decomposition. The InGaN integrated XRD signal of the 18% film displays an exponential decrease vs. time, implying InGaN decomposition proceeds via a first-order reaction mechanism.  相似文献   

13.
Vertically aligned SnO2 nanowires (NWs) were grown for the first time by a vapor–liquid–solid method on c-sapphire with gold as a catalyst under Ar gas flow. Electron backscatter diffraction analysis indicated the NWs are single crystalline having the rutile structure, grow vertically along the [1 0 0] direction, and exhibit a consistent epitaxial relationship where lattice mismatch is estimated to be 0.3% along the SnO2 [0 1 0] direction. The growth of these NWs is sensitive to many parameters, including growth duration, substrate type, source vapor concentration, and the thickness of the catalyst layer. Photoluminescence measurements at room temperature showed that the vertically aligned NWs exhibit an intense transition at 3.64 eV, a near band-edge transition which is rarely observed in SnO2.  相似文献   

14.
15.
This study examined the influence of strain-compensated triple AlGaN/GaN/InGaN superlattice structures (SLs) in n-GaN on the structural, electrical and optical characteristics of LEDs by analyzing the etch pits density (EPD), stress measurement, high-resolution X-ray diffraction (HRXRD), sheet resistance, photoluminescence (PL) and light–current–voltage (LIV). EPD, stress measurement and HRXRD studies showed that the insertion of AlGaN/GaN/InGaN SLs during the growth of n-GaN effectively distributed and compensated for the strong compressive stress, and decreased the dislocation density in n-GaN. The operating voltage at 20 mA for the LEDs grown with SLs decreased to 3.18 V from 3.4 V for the LEDs grown without SLs. In addition, a decrease in the spectral blue shift compared to the LEDs grown without SLs was observed in the LEDs grown with the SLs.  相似文献   

16.
Ag-doped ZnO (ZnO:Ag) thin films were deposited on quartz substrates by radio frequency magnetron sputtering technique. The influence of oxygen/argon ratio on structural, electrical and optical properties of ZnO:Ag films has been investigated. ZnO:Ag films gradually transform from n-type into p-type conductivity with increasing oxygen/argon ratio. X-ray photoelectron spectroscopy measurement indicates that Ag substitutes Zn site (AgZn) in the ZnO:Ag films, acting as acceptor, and being responsible for the formation of p-type conductivity. The presence of p-type ZnO:Ag under O-rich condition is attributed to the depression of the donor defects and low formation energy of AgZn acceptor. The I–V curve of the p-ZnO:Ag/n-ZnO homojunction shows a rectification characteristic with a turn-on voltage of ∼7 V.  相似文献   

17.
We report on the epitaxial growth of the intrinsic ferromagnetic semiconductor GdN on Si (1 1 1) substrates buffered by a thick AlN layer, forming a heteroepitaxial system with promise for spintronics. Growth is achieved by depositing Gd in the presence of unactivated N2 gas, demonstrating a reactivity at the surface that is sufficient to grow near stoichiometric GdN only when the N2:Gd flux ratio is at least 100. Reflection high-energy electron diffraction and X-ray diffraction show fully (1 1 1)-oriented epitaxial GdN films. The epitaxial quality of the films is assessed by Rutherford backscattering spectroscopy carried out in random and channelling conditions. Magnetic measurements exhibit a Curie temperature at 65 K and saturation magnetisation of 7 μB/Gd in agreement with previous bulk and thin-film data. Hall effect and resistance data establish that the films are heavily doped semiconductors, suggesting that up to 1% of the N sites are vacant.  相似文献   

18.
The use of a selenium–tellurium (SeTe) mixed source in the isothermal close space sublimation growth of CdSe epilayers is considered. The epitaxial growth was performed in flowing helium by sequential exposures of the substrate to vapors of the mixed SeTe source and elemental cadmium at temperatures within 350–410 °C. In spite of the mixed source (proposed to decrease the partial pressure of Se), tellurium incorporation was small and CdSexTe(1−x) (x∼0.98) epilayers were obtained. X-ray diffraction reciprocal space mapping shows the existence of hexagonal inclusions mainly on the (1 1 1) facets of the cubic phase. Material deposition on areas of the graphite crucible exposed to the sources, contamination of the Cd source and large growth rates suggest the existence of a selenium transport process via graphite. This transport might be the result of the combination of selenium deposition on graphite with a subsequent activated desorption of selenium under cadmium exposure. It affects Cd source purity and growth kinetic bringing on a modification of the usual atomic layer deposition regimen; however, a reproducible growth rate of the epilayers was obtained.  相似文献   

19.
Nonstoichiometric (Cu2−xSe) and stoichiometric (CuSe, β-Cu2Se and Cu2Se) copper selenide hexagonal nanoplates have been synthesized using different general and convenient copper sources, e.g. copper chloride, copper sulphate, copper nitrate, copper acetate, elemental copper with elemental selenium, friendly ethylene glycol and hydrazine hydrate in a defined amount of water at 100 °C within 12 h adopting the solvothermal method. Phase analysis, purity and morphology of the product have been well studied by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM) and energy dispersive X-ray diffraction (EDAX) techniques. The structural and compositional analysis revealed that the products were of pure phase with corresponding atomic ratios. SEM, TEM and HRTEM analyses revealed that the nanoplates were in the range 200–450 nm and the as-prepared products were uniform and highly crystallized. The nanoplates consisted of {0 0 1} facets of top–bottom surfaces and {1 1 0} facets of the other six side surfaces. This new approach encompasses many advantages over the conventional solvothermal method in terms of product quality (better morphology control with high yield) and reaction conditions (lower temperatures). Copper selenide hexagonal nanoplates obtained by the described method could be potential building blocks to construct functional devices and solar cell. This work may open up a new rationale on designing the solution synthesis of nanostructures for materials possessing similar intrinsic crystal symmetry. On the basis of the carefully controlled experiments mentioned herein, a plausible formation mechanism of the hexagonal nanoplates was suggested and discussed. To the best of our knowledge, this is the first report on nonstoichiometric (Cu2−xSe) as well as stoichiometric (CuSe, β-Cu2Se and Cu2Se) copper selenide hexagonal nanoplates with such full control of morphologies and phases by this method under mild conditions.  相似文献   

20.
The bowing curvature of the free-standing GaN substrate significantly decreased almost linearly from 0.67 to 0.056 m−1 (i.e. the bowing radius increased from 1.5 to 17.8 m) with increase in inductively coupled plasma (ICP) etching time at the N-polar face, and eventually changed the bowing direction from convex to concave. Furthermore, the influences of the bowing curvature on the measured full width at half maximum (FWHM) of high-resolution X-ray diffraction (HRXRD) in (0 0 2) reflection were also deduced, which reduced from 176.8 to 88.8 arcsec with increase in ICP etching time. Decrease in the nonhomogeneous distribution of threading dislocations and point defects as well as VGa–ON complex defects on removing the GaN layer from N-polar face, which removed large amount of defects, was one of the reasons that improved the bowing of the free-standing GaN substrate. Another reason was the high aspect ratio of needle-like GaN that appeared at the N-polar face after ICP etching, which released the compressive strain of the free-standing GaN substrate. By doing so, crack-free and extremely flat free-standing GaN substrates with a bowing radius of 17.8 m could be obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号