首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
Single crystalline ZnO film was grown on (1 1 1) Si substrate through employing an oxidized CrN buffer layer by plasma-assisted molecular beam epitaxy. Single crystalline characteristics were confirmed from in-situ reflection high energy electron diffraction, X-ray pole figure measurement, and transmission electron diffraction pattern, consistently. Epitaxial relationship between ZnO film and Si substrate is determined to be (0 0 0 1)ZnO‖(1 1 1)Si and [1 1 2¯ 0]ZnO‖[0 1 1]Si. Full-width at half-maximums (FWHMs) of (0 0 0 2) and (1 0 1¯ 1) X-ray rocking curves (XRCs) were 1.379° and 3.634°, respectively, which were significantly smaller than the FWHMs (4.532° and 32.8°, respectively) of the ZnO film grown directly on Si (1 1 1) substrate without any buffer. Total dislocation density in the top region of film was estimated to be ∼5×109 cm−2. Most of dislocations have a screw type component, which is different from the general cases of ZnO films with the major threading dislocations with an edge component.  相似文献   

2.
The microstructural characteristics and crystallographic evolutions of Ga-doped ZnO (GZO) films grown at high temperatures were examined by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). The GZO films with various film thicknesses were grown on (0 0 0 1) Al2O3 substrates at 750 °C by RF magnetron sputtering using a 2 wt% Ga-doped ZnO single target. The (0 0 0 2) ZnO peaks in the XRD patterns shifted to a higher angle with increasing film thickness and an additional (1 0 1¯ 1) ZnO peak was observed in the final stage of film growth. HRTEM showed the epitaxial growth of GZO films in the initial growth stage and the formation of surface protrusions in the intermediate stage due to elastic relaxation. The surface protrusions consisted of {1 0 1¯ 1}, {1 0 1¯ 3}, and {0 0 0 2} planes. After the surface protrusions had formed, a GZO film with many c-axis tilted grains formed due to plastic relaxation, where the tilted grain boundaries had an angle of 62° to the substrate. The formation of the protrusions and c-axis tilted grains was closely related to the strain status of the film induced by Ga incorporation, high-temperature growth and a high film thickness.  相似文献   

3.
The structural and infrared properties of the highly (00.2) oriented ZnO film, randomly grown Au-catalyzed ZnO nanowires (NWs) and vertically aligned self-catalyzed ZnO NWs were compared. In the XRD analysis, (0 0 2) diffraction intensity of self-catalyzed ZnO NWs was enhanced mainly attributed to the preferential growth of NWs in [0 0 0 1] as compared to the ZnO film and the randomly grown Au-catalyzed ZnO NWs. The high UV-to-green emission ratio of self-catalyzed ZnO NWs in room temperature PL measurement indicates that they had a better crystal quality as compared to Au-catalyzed ZnO NWs and ZnO film. Infrared spectroscopy has been used to characterize these films and nanowires too. The phonon peak 407 cm−1 which related to the transverse optical (TO) vibrations perpendicular to the optical axis was observed in the IR reflectivity measurements on the highly c-oriented ZnO film. The IR peaks that appeared in the 550–580 cm−1 region of the spectra of the specimens could be assigned to the ZnO NWs as it was not observed in the ZnO film. These peaks were observed in the 550–580 cm−1 region in both s- and p-polarized light for the randomly grown Au-catalyzed ZnO NWs. In contrast, the IR peak at 580 cm−1 was clearly shown in p-polarized light but not in the s-polarized light for vertically aligned ZnO NWs. This indicated that the vibration was polarized along the vertically aligned ZnO NWs. The (00.2) orientation of the ZnO specimens could be identified by comparing the p- and s-polarized IR spectra.  相似文献   

4.
Growth of tin oxide thin films using molecular beam epitaxy in a pyrolyzed nitrogen dioxide atmosphere on a titanium dioxide (1 1 0) substrate was investigated using X-ray photoelectron spectroscopy (XPS), electron diffraction, and atomic force microscopy (AFM). Properties of deposited films were studied for their dependence on substrate temperature and oxidation gas pressure. Analyses using XPS data revealed that tin atoms were fully oxidized to Sn4+ and SnO2 films were grown epitaxially in deposition conditions of substrate temperatures of 627 K or higher and NO2 pressure greater than 3×10−3 Pa. At a substrate temperature of 773 K, a smooth surface with atomic steps was visible in the SnO2 films, but above or below this temperature, fine grains with crystal facets or porous structures appeared. At pressures of 8×10−4 to 3×10−4 Pa, the randomly oriented SnO phase was dominantly grown. Further decreasing the pressure, the Sn metal phase, which was epitaxially crystallized at less than 500 K, was also grown.  相似文献   

5.
Single-crystalline ZnO films have been grown on a-plane sapphire in plasma assisted molecular beam epitaxy by introducing a high-temperature ZnO buffer layer. The residual electron concentration of the films can be lowered to 1.5×1016 cm−3, comparable with the best value ever reported for ZnO films grown on a rare and costly substrate of ScAlMgO4. A 3×3 reconstruction has been observed on the films grown in this route, which reveals that the films have very smooth surface. X-ray phi-scan spectrum of the films shows six peaks with 60° intervals, and two-dimensional X-ray diffraction datum indicates the single-crystalline nature of the films. Low temperature photoluminescence spectrum of the films shows a dominant free exciton emission and five phonon replicas, confirming the high quality of the films.  相似文献   

6.
Structural and optical properties of nonpolar a-plane ZnO films grown with different II/VI ratios on r-plane sapphire substrates by plasma-assisted molecular beam epitaxy were investigated. Even by increasing the II/VI ratio across the stoichiometric flux condition a consistent surface morphology of striated stripes along the ZnO 〈0 0 0 1〉 direction without any pit formation was observed, which is contrary to polar c-plane ZnO films. Root mean square surface roughness, full width at half maximum values of X-ray rocking curves, defect densities, and photoluminescence were changed with the II/VI ratio. The sample grown with stoichiometric flux condition showed the lowest value of rms roughness, the smallest threading dislocation and stacking fault densities of ∼4.7×108 cm−2 and ∼9.5×104 cm−1, respectively, and the highest intensity of DoX peak. These results imply that the stoichiometric flux growth condition is suitable to obtain superior structural and optical properties compared to other flux conditions.  相似文献   

7.
Nitrogen was incorporated into ZnO films grown by metalorganic chemical vapour deposition (MOCVD) on ZnO substrates using DMZn-TEN, tert-butanol and diallylamine, respectively, as zinc, oxygen and doping sources. The carrier gas was either hydrogen or nitrogen and the partial pressure ratio (RVI/II) was varied in order to favor the nitrogen incorporation and/or reduce carbon related defects. The ZnO films have been characterized by Micro-Raman scattering and SIMS measurements. SIMS measurements confirm the nitrogen incorporation with concentrations extending from ∼1019 cm−3 to ∼4×1020 cm−3. Raman spectra show nitrogen local vibration modes in films grown at low RVI/II ratio and using H2 as carrier gas. However, a vibration band attributed to carbon clusters dominates the Raman spectra for films grown with N2 carrier. The contribution of N complexes was discussed. The strain was calculated for the as-grown and annealed films and it changes from tensile to compressive after annealing.  相似文献   

8.
Epitaxial (La0.07Sr0.93)SnO3 [LSSO] films were deposited on CaF2 substrates by pulse laser deposition. The (1 0 0)c orientation of LSSO films was observed only on (1 1 0)CaF2, whereas (1 1 0)c orientation was found on (1 1 1)CaF2 and (1 0 0)CaF2. (0 0 1) polar axis oriented tetragonal Pb(Zr0.35Ti0.65)O3 films were grown on the fabricated (1 0 0)cLSSO∥(1 1 0)CaF2 by pulsed metal organic chemical vapor deposition. The (0 0 1)Pb(Zr0.35Ti0.65)O3∥(1 0 0)cLSSO∥(1 1 0)CaF2 stack structure exhibited about 70% transparency with an adsorption edge of approximately 330 nm.  相似文献   

9.
High-quality zinc oxide (ZnO) films were successfully grown on ZnO-buffered a-plane sapphire (Al2O3 (1 1 2¯ 0)) substrates by controlling temperature for lateral growth using chemical bath deposition (CBD) at a low temperature of 60 °C. X-ray diffraction analysis and transmission electron microscopy micrographs showed that the ZnO films had a single-crystalline wurtzite structure with c-axis orientation. Rocking curves (ω-scans) of the (0 0 0 2) reflections showed a narrow peak with full width at half maximum value of 0.50° for the ZnO film. A reciprocal space map indicated that the lattice parameters of the ZnO film (a=0.3250 nm and c=0.5207 nm) were very close to those of the wurtzite-type ZnO. The ZnO film on the ZnO-buffered Al2O3 (1 1 2¯ 0) substrate exhibited n-type conduction, with a carrier concentration of 1.9×1019 cm−3 and high carrier mobility of 22.6 cm2 V−1 s−1.  相似文献   

10.
Polar and non-polar ZnMgO were synthesized on different crystallographic planes (C-, R- and M-planes) of sapphire (Al2O3) substrates by metal organic chemical vapor deposition, respectively. Under the same experimental condition, polar ZnMgO nanorods were obtained on C-Al2O3 substrate whereas non-polar ZnMgO thin films were obtained on R- and M-Al2O3 substrates. The surface morphology was significantly influenced by the competition of the preferable growth directions on different sapphire substrates. On C-Al2O3 substrate, ZnMgO nanorods were vertically well-aligned with typical lengths in the range 330–360 nm. On R- and M-Al2O3 substrates, however, ZnMgO thin films with flat surfaces were obtained, whose thickness were 150 and 20 nm, respectively. Under the same condition, the C-ZnMgO deposited on C-Al2O3 substrate has the maximum growth velocity (11 nm/nim), followed by A-ZnMgO deposited on R-Al2O3 substrate (5 nm/min), and the M-ZnMgO deposited on M-Al2O3 substrate has the minimum one (0.67 nm/min). The Near-Band-Edge (NBE) emission in Photoluminescence (PL) spectra shows a clear blueshift and a slight broadening compared with that of pure ZnO samples, which suggest that the Mg content has successfully incorporated into ZnO. The different energy blueshifts (67 meV and 98 meV) of the NBE emission demonstrate that A-ZnMgO deposited on R-Al2O3 substrate has higher Mg incorporation efficiency than C-ZnMgO on C-Al2O3 substrate.  相似文献   

11.
Cuprous oxide (Cu2O) thin films were grown epitaxially on c-axis-oriented polycrystalline zinc oxide (ZnO) thin films by low-pressure metal organic chemical vapor deposition (MOCVD) from Copper(II) hexafluoroacetylacetonate [Cu(C5HF6O2)2] at various substrate temperatures, between 250 and 400 °C, and pressures, between 0.6 and 2.1 Torr. Polycrystalline thin films of Cu2O grow as single phase with [1 1 0] axis aligned perpendicular to the ZnO surface and with in-plane rotational alignment due to (2 2 0)Cu2O(0 0 0 2)ZnO; [0 0 1]Cu2O[1 2¯ 1 0]ZnO epitaxy. The resulting interface is rectifying and may be suitable for oxide-based p–n junction solar cells or diodes.  相似文献   

12.
A simple growth technique capable of growing a variety of zinc oxide (ZnO) nanostructures with record growth rates of 25 μm/s is demonstrated. Visible lengths of ZnO nanowires, nanotubes, comb-like and pencil-like nanostructures could be grown by employing a focused CO2 laser-assisted heating of a sintered ZnO rod in ambient air, in few seconds. For the first time, the growth process of nanowires was videographed, in-situ, on an optical microscope. It showed that ZnO was evaporated and presumably decomposed into Zn and oxygen by laser heating, reforming ZnO nanostructures at places with suitable growth temperatures. Analysis on the representative nanowires shows a rectangular cross-section, with a [0 0 0 1] growth direction. With CO2 laser heating replacing furnace heating used conventionally, and using different reactants and forming gases, this method could be easily adopted for other semiconducting inorganic nanostructures in addition to ZnO.  相似文献   

13.
Wide band-gap BeZnO layers were grown on Al2O3 (0 0 0 1) substrate using radio-frequency magnetron co-sputtering. The rate of BexZn1−xO crystallized as a hexagonal structure was x=0.2. From the X-ray photoelectron spectroscopy measurement, the O–Zn bonds relating the crystal structure and the Be–O bonds related to the deviation of the stoichiometry in the BeZnO layer were caught at 530.4 and 531.7 eV in the O 1s spectrum, respectively. Thus, the observance on the Be 1s peak of 113.2 eV associated with the bonding Be–O indicates that the sputtered Be atoms are substituted for the host-lattice site in ZnO. This Be–O bonding shows a relatively low intense and broadening spectrum caused by large fluctuation of Be content in the BeZnO layer. From the photoluminescence and transmittance measurement, the free exciton and the neutral donor-bound exciton (D0, X) emissions were observed at 3.7692 and 3.7313 eV, respectively, and an average transmittance rate over 95% was achieved in a wide ultraviolet (UV)–visible region. Also, the binding energy for the (D0, X) emission was extracted to be 37.9 meV. Through the wide band-gap material BeZnO, we may open some possibilities for fabricating a ZnO-based UV light-emitting diode to be utilized as a barrier layer comprised of the ZnO/BeZnO quantum well structure and/or an UV light emitting material itself.  相似文献   

14.
Non-polar a-plane (1 1 2¯ 0) GaN films were grown on r-plane sapphire by metal–organic vapor phase epitaxy and were subsequently annealed for 90 min at 1070 °C. Most dislocations were partial dislocations, which terminated basal plane stacking faults. Prior to annealing, these dislocations were randomly distributed. After annealing, these dislocations moved into arrays oriented along the [0 0 0 1] direction and aligned perpendicular to the film–substrate interface throughout their length, although the total dislocation density remained unchanged. These changes were accompanied by broadening of the symmetric X-ray diffraction 1 1 2¯ 0 ω-scan widths. The mechanism of movement was identified as dislocation glide, occurring due to highly anisotropic stresses (confirmed by X-ray diffraction lattice parameter measurements) and evidenced by macroscopic slip bands observed on the sample surface. There was also an increase in the density of unintentionally n-type doped electrically conductive inclined features present at the film–substrate interface (as observed in cross-section using scanning capacitance microscopy), suggesting out-diffusion of impurities from the substrate along with prismatic stacking faults. These data suggest that annealing processes performed close to film growth temperatures can affect both the microstructure and the electrical properties of non-polar GaN films.  相似文献   

15.
Thin films of LiCoO2 were prepared by pulsed laser deposition technique and the properties were studied in relation to the deposition parameters. The films deposited from a sintered composite target (LiCoO2+Li2O) in an oxygen partial pressure of 100 mTorr and at a substrate temperature of 300 °C exhibited preferred c-axis (0 0 3) orientation perpendicular to the substrate surface. The AFM data demonstrated that the films are composed of uniform distribution of fine grains with an average grain size of 80 nm. The grain size increased with an increase in substrate temperature. The (0 0 3) orientation decreased with increase in (1 0 4) orientation for the films deposited at higher substrate temperatures (>500 °C) indicating that the films’ growth is parallel to the substrate surface. The composition of the experimental films was analyzed using X-ray photoelectron spectroscopy (XPS). The binding energy peaks of Co(2p3/2) and Co(2p1/2) are, respectively, observed at 779.3 and 794.4 eV, which can be attributed to the Co3+ bonding state of LiCoO2. The electrochemical measurements were carried out on Li//LiCoO2 cells with a lithium metal foil as anode and LiCoO2 film as cathode of 1.5 cm2 active area using a Teflon home-made cell hardware. The Li//LiCoO2 cells were tested in the potential range 2.6-4.2 V. Specific capacity as high as 205 mC/cm2 μm was measured for the film grown at 700 °C. The growth of LiCoO2 films were studied in relation to the deposition parameters for their effective utilization as cathode materials in solid-state microbattery application.  相似文献   

16.
Epitaxial thin films of TmFeCuO4 with a two-dimensional triangular lattice structure were successfully grown on yttria-stabilized-zirconia substrates by pulsed laser deposition and ex situ annealing in air. The films as-deposited below 500 °C showed no TmFeCuO4 phase and the subsequent annealing resulted in the decomposition of film components. On the other hand, as-grown films deposited at 800 °C showed an amorphous nature. Thermal annealing converted the amorphous films into highly (0 0 1)-oriented epitaxial films. The results of scanning electron microscopic analysis suggest that the crystal growth process during thermal annealing is dominated by the regrowth of non-uniformly shaped islands to the distinct uniform islands of hexagonal base.  相似文献   

17.
Epitaxial NiO (1 1 1) and NiO (1 0 0) films have been grown by atomic layer deposition on both MgO (1 0 0) and α-Al2O3 (0 0 l) substrates at temperatures as low as 200 °C by using bis(2,2,6,6-tetramethyl-3,5-heptanedionato)Ni(II) and water as precursors. The films grown on the MgO (1 0 0) substrate show the expected cube on cube growth while the NiO (1 1 1) films grow with a twin rotated 180° on the α-Al2O3 (0 0 l) substrate surface. The films had columnar microstructures on both substrate types. The single grains were running throughout the whole film thickness and were significantly smaller in the direction parallel to the surface. Thin NiO (1 1 1) films can be grown with high crystal quality with a FWHM of 0.02–0.05° in the rocking curve measurements.  相似文献   

18.
SnO2 films have been deposited on Y-stabilized ZrO2 (YSZ) (1 0 0) substrates at different substrate temperatures (500–800 °C) by metalorganic chemical vapor deposition (MOCVD). Structural, electrical and optical properties of the films have been investigated. The films deposited at 500 and 600 °C are epitaxial SnO2 films with orthorhombic columbite structure, and the HRTEM analysis shows a clear epitaxial relationship of columbite SnO2(1 0 0)||YSZ(1 0 0). The films deposited at 700 and 800 °C have mixed-phase structures of rutile and columbite SnO2. The carrier concentration of the films is in the range from 1.15×1019 to 2.68×1019 cm−3, and the resistivity is from 2.48×10−2 to 1.16×10−2 Ω cm. The absolute average transmittance of the films in the visible range exceeds 90%. The band gap of the obtained SnO2 films is about 3.75–3.87 eV.  相似文献   

19.
High quality, straight GaN nanowires (NWs) with diameters of 50 nm and lengths up to 3 μm have been grown on Si(0 0 1) using Au as a catalyst and the direct reaction of Ga with NH3 and N2:H2 at 900 °C. These exhibited intense, near band edge photoluminescence at 3.42 eV in comparison to GaN NWs with non-uniform diameters obtained under a flow of Ar:NH3, which showed much weaker band edge emission due to strong non-radiative recombination. A significantly higher yield of β-Ga2O3 NWs with diameters of ≤50 nm and lengths up to 10 μm were obtained, however, via the reaction of Ga with residual O2 under a flow of Ar alone. The growth of GaN NWs depends critically on the temperature, pressure and flows in decreasing order of importance but also the availability of reactive species of Ga and N. A growth mechanism is proposed whereby H2 dissociates on the Au nanoparticles and reacts with Ga giving GaxHy thereby promoting one-dimensional (1D) growth via its reaction with dissociated NH3 near or at the top of the GaN NWs while suppressing at the same time the formation of an underlying amorphous layer. The higher yield and longer β-Ga2O3 NWs grow by the vapor liquid solid mechanism that occurs much more efficiently than nitridation.  相似文献   

20.
Gd2O3-doped CeO2 (Gd0.1Ce0.9O1.95, GDC) thin films were synthesized on (1 0 0) Si single crystal substrates by a reactive radio frequency magnetron sputtering technique. Structures and surface morphologies were characterized by X-ray diffraction (XRD), Atomic Force Microscopy (AFM) and one-dimensional power spectral density (1DPSD) analysis. The XRD patterns indicated that, in the temperature range of 200–700 °C, f.c.c. structured GDC thin films were formed with growth orientations varying with temperature—random growth at 200 °C, (2 2 0) textures at 300–600 °C and (1 1 1) texture at 700 °C. GDC film synthesized at 200 °C had the smoothest surface with roughness of Rrms=0.973 nm. Its 1DPSD plot was characterized with a constant part at the low frequencies and a part at the high frequencies that could be fitted by the f−2.4 power law decay. Such surface feature and scaling behavior were probably caused by the high deposition rate and random growth in the GDC film at this temperature. At higher temperatures (300–700 °C), however, an intermediate frequency slope (−γ2≈−2) appeared in the 1DPSD plots between the low frequency constant part and the high frequency part fitted by f−4 power law decay, which indicated a roughing mechanism dominated by crystallographic orientation growth that caused much rougher surfaces in GDC films (Rrms>4 nm).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号