首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ZnO nanoparticles as small as 80 nm were successfully synthesized using a modified vapor phase transport (VPT) process at substrate temperatures as low as 222 °C. Particle size distribution and morphology were characterized by scanning electron microscopy and atomic force microscopy. Energy dispersive X-ray spectroscopy and X-ray diffraction indicate the synthesis of high quality crystalline ZnO structures. Low temperature (4.2 K) photoluminescence (PL) spectroscopy was used to characterize the optical quality of the nanoparticles. Ultraviolet emission and a nanostructure specific feature at 3.366 eV are strong in the PL spectra. The 3.366 eV feature is observed to predominate the spectrum with decrease in particle size. This size effect corroborates the luminescence as a nanostructure-specific surface related exciton feature as previously speculated in the literature. In addition, self-assembled ZnO mesoparticles (>100 nm) were realized by increasing the growth time. Low growth temperatures of the particles allow for their potential utilization in flexible organic hybrid optoelectronics. However, this work focuses mainly on the modified synthesis and optical characterization of nanoparticles.  相似文献   

2.
ZnSe nanoribbons have been successfully synthesized on a large scale by solvothermal treatment of Zn and Se powder in the mixture of hydrazine hydrate and diethanolamine at 140 °C for 24 h and subsequent annealing in Ar. The morphology of the final products strongly depended on the volume ratio of hydrazine hydrate and diethanolamine. Scanning electron microscopy (SEM) explorations indicated that the as-prepared ZnSe nanoribbons were mostly about 40 nm in thickness, 100 nm in width, and 50 μm in length. X-ray diffraction pattern (XRD) and transmission electron microscopy (TEM) investigations confirmed that resulting ZnSe nanoribbons are wurtzite structures and have a [0 0 1] growth direction. PL (photoluminescence) spectrum of the products exhibited a visible light emission. Based on these investigations, the products were expected to find wide applications in optoelectronic, field emission and catalytic fields.  相似文献   

3.
Nonstoichiometric (Cu2−xSe) and stoichiometric (CuSe, β-Cu2Se and Cu2Se) copper selenide hexagonal nanoplates have been synthesized using different general and convenient copper sources, e.g. copper chloride, copper sulphate, copper nitrate, copper acetate, elemental copper with elemental selenium, friendly ethylene glycol and hydrazine hydrate in a defined amount of water at 100 °C within 12 h adopting the solvothermal method. Phase analysis, purity and morphology of the product have been well studied by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM) and energy dispersive X-ray diffraction (EDAX) techniques. The structural and compositional analysis revealed that the products were of pure phase with corresponding atomic ratios. SEM, TEM and HRTEM analyses revealed that the nanoplates were in the range 200–450 nm and the as-prepared products were uniform and highly crystallized. The nanoplates consisted of {0 0 1} facets of top–bottom surfaces and {1 1 0} facets of the other six side surfaces. This new approach encompasses many advantages over the conventional solvothermal method in terms of product quality (better morphology control with high yield) and reaction conditions (lower temperatures). Copper selenide hexagonal nanoplates obtained by the described method could be potential building blocks to construct functional devices and solar cell. This work may open up a new rationale on designing the solution synthesis of nanostructures for materials possessing similar intrinsic crystal symmetry. On the basis of the carefully controlled experiments mentioned herein, a plausible formation mechanism of the hexagonal nanoplates was suggested and discussed. To the best of our knowledge, this is the first report on nonstoichiometric (Cu2−xSe) as well as stoichiometric (CuSe, β-Cu2Se and Cu2Se) copper selenide hexagonal nanoplates with such full control of morphologies and phases by this method under mild conditions.  相似文献   

4.
In this report, we describe the noncatalytic and template-free synthesis of zinc nitride (Zn3N2) novel microstructures with hollow interiors via simple nitridation reaction of zinc powder at optimum temperature of 600° C for 120 min in ammonia gas environment under atmospheric pressure. Hollow microstructures obtained were mostly of spherical shape with diameters in the range 8–35 μm and with open mouth on the surface. The growth mechanism has been proposed for the elucidation of hollow structures formation. Crystal structure and phase purity of the product were investigated by X-ray diffraction (XRD) characterization and energy dispersive X-ray spectroscopy (EDS) analysis confirmed the chemical composition of the product. Morphology of the as-prepared product was investigated using scanning electron microscopy (SEM). Ultraviolet–visible–near infrared (UV–vis–NIR) spectrophotometry was used to study the transmittance behaviour of zinc nitride microstructures and thereby an indirect optical band gap of 2.81 eV was calculated using Davis–Mott model. Room temperature photoluminescence (PL) studies exhibited two prominent peaks of the product; one very strong peak near band edge UV emission (395 nm) and other comparatively suppressed and broad peak at orange luminescence emission (670 nm).  相似文献   

5.
In this work, a novel system of ethylene glycol/water (EG/W) was employed to synthesize LiFePO4, in which dodecyl benzene sulphonic acid sodium (SDBS) was used as soft template to control particle morphology. The samples were characterized by X-ray diffractometer (XRD), field emission scanning electron microscopy (FE-SEM), high resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED) and energy dispersive X-ray spectroscopy (EDX). The LiFePO4 sample obtained by the reported method displays interesting hierarchical nanostructure (i.e. nanodendrites), which was constructed by nanorods of 3–5 μm in length and ∼50 nm in diameter. The EG/W ratio, amount of SDBS added, hydrothermal temperature and duration played important roles in the assembly of the hierarchical nanostructures. A formation mechanism was proposed and experimentally verified. It is concluded that the nanodendrites were formed due to the end-to-end self-assembly of nanorods. Compared to previously reported methods, the reported approach shows obvious advantages of one-step synthesis, environmental friendliness and low cost, to name a few. The nanodendrites as a cathode material have a higher capacity, compared with the other samples.  相似文献   

6.
Well-crystallized straight Si nanowires (SiNWs) were successfully prepared in large scale via a facile reaction between NaN3 and Na2SiF6 at 600 °C without using any catalyst. Characterization by X-ray powder diffraction and transmission electron microscopy demonstrates that the as-obtained product is pure-phase cubic SiNWs with diameters of 40 nm or so, and lengths of several micrometers. And the SiNWs with spherical tips can be obtained at a temperature as low as 300 °C. Heating temperature and holding time have crucial influence on the synthesis and morphology of the SiNWs. An oxide-assisted growth mechanism is responsible for the formation of the SiNWs.  相似文献   

7.
Single crystalline ZnO film was grown on (1 1 1) Si substrate through employing an oxidized CrN buffer layer by plasma-assisted molecular beam epitaxy. Single crystalline characteristics were confirmed from in-situ reflection high energy electron diffraction, X-ray pole figure measurement, and transmission electron diffraction pattern, consistently. Epitaxial relationship between ZnO film and Si substrate is determined to be (0 0 0 1)ZnO‖(1 1 1)Si and [1 1 2¯ 0]ZnO‖[0 1 1]Si. Full-width at half-maximums (FWHMs) of (0 0 0 2) and (1 0 1¯ 1) X-ray rocking curves (XRCs) were 1.379° and 3.634°, respectively, which were significantly smaller than the FWHMs (4.532° and 32.8°, respectively) of the ZnO film grown directly on Si (1 1 1) substrate without any buffer. Total dislocation density in the top region of film was estimated to be ∼5×109 cm−2. Most of dislocations have a screw type component, which is different from the general cases of ZnO films with the major threading dislocations with an edge component.  相似文献   

8.
Dense vertical arrays of indium doped ZnO nanoplates have been grown by thermal treatment of compacted ZnS–In2O3 powders with 0.35 at% of In. The distribution of nanoplates is related to the grain structure of the substrate. Only a small content of In has been detected in the plates by energy dispersive X-ray spectroscopy, but comparison with previous works shows that its presence in the precursor determines the growth of the nanoplates. Increase in the amount of In in the precursor leads to the growth of long indium doped ZnO nanobelts. Cathodoluminescence spectra of the nanobelts show a 23 meV blue shift of the band edge emission.  相似文献   

9.
GaN films were grown by metal organic chemical vapor deposition on TaC substrates that were created by pulsed laser deposition of TaC onto (0 0 0 1) SiC substrates at ∼1000 °C. This was done to determine if good quality TaC films could be grown, and if good quality GaN films could be grown on this closely lattice matched to GaN, conductive material. This was done by depositing the TaC on on-axis and 3° or 8° off-axis (0 0 0 1) SiC at temperatures ranging from 950 to 1200 °C, and examining them using X-ray diffraction, scanning electron microscopy, atomic force microscopy, and transmission electron microscopy. The GaN films were grown on as-deposited TaC films, and films annealed at 1200, 1400, or 1600 °C, and examined using the same techniques. The TaC films were polycrystalline with a slight (1 1 1) texture, and the grains were ∼200 nm in diameter. Films grown on-axis were found to be of higher quality than those grown on off-axis substrates, but the latter could be improved to a comparable quality by annealing them at 1200–1600 °C for 30 min. TaC films deposited at temperatures above 1000 °C were found to react with the SiC. GaN films could be deposited onto the TaC when the surface was nitrided with NH3 for 3 min at 1100 °C and the low temperature buffer layer was AlN. However, the GaN did not nucleate easily on the TaC film, and the crystallites did not have the desired (0 0 0 1) preferred orientation. They were ∼10 times larger than those typically seen in films grown on SiC or sapphire. Also the etch pit concentration in the GaN films grown on the TaC was more than 2 orders of magnitude less than it was for growth on the SiC.  相似文献   

10.
We developed a growth method for forming a GaAs quantum well contained in an AlGaAs/GaAs heterostructure nanowire using selective-area metal organic vapor phase epitaxy. To find the optimum growth condition of AlGaAs nanowires, we changed the growth temperature between 800 and 850 °C and found that best uniformity of the shape and the size was obtained near 800 °C but lateral growth of AlGaAs became larger, which resulted in a wide GaAs quantum well grown on the top (1 1 1)B facet of the AlGaAs nanowire. To form the GaAs quantum well with a reduced lateral size atop the AlGaAs nanowire, a GaAs core nanowire about 100 nm in diameter was grown before the AlGaAs growth, which reduced the lateral size of AlGaAs to roughly half compared with that without the GaAs core. Photoluminescence measurement at 4.2 K indicated spectral peaks of the GaAs quantum wells about 60 meV higher than the acceptor-related recombination emission peak of GaAs near 1.5 eV. The photoluminescence peak energy showed a blue shift of about 15 meV, from 1.546 to 1.560 eV, as the growth time of the GaAs quantum well was decreased from 8 to 3 s. Transmission electron microscopy and energy dispersive X-ray analysis of an AlGaAs/GaAs heterostructure nanowire indicated a GaAs quantum well with a thickness of 5−20 nm buried along the 〈1 1 1〉 direction between the AlGaAs shells, showing a successful fabrication of the GaAs quantum well.  相似文献   

11.
Vertically well-aligned ZnO nanorods were fabricated in-situ and ex-situ on ZnO homo-buffer layers using catalyst-free metal-organic chemical vapor deposition. Field-emission electron microscopy measurements demonstrated that the nanorods were well aligned and had a uniform diameter of 70–100 nm depending on the growth temperature, irrespective of growth conditions, in-situ and ex-situ. X-ray diffraction measurements demonstrated that the ZnO nanorods and the ZnO buffer layers had a wurtzite structure, and that the crystal quality of the nanorods grown on a smooth surface was better than that of the nanorods grown on a rough surface. Field-emission transmission electron microscopy measurements revealed the presence of a disordered layer at the interface of the nanorod and the buffer layer.  相似文献   

12.
Highly ordered hexagonal prism microstructures of copper sulfide (CuS) by assembling nano-flakes have been synthesized with high yield via a facile one-step route. We synthesized CuS microstructures using low cost beginning materials CuSO4·5H2O and Na2S2O3·5H2O under lower reaction temperature (60 °C). Hexamethylinetetramin (C6H12N4, HMT) was introduced into the reaction system as a capped agent. The influence of reaction time and capping agent (HMT) on the final structure of products was studied systematically. The obtained products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Energy-dispersive X-ray spectroscopes (EDS), and transmission electron microscopy (TEM). The possible mechanism for the formation of the interesting highly ordered hexagonal prism microstructures CuS was also proposed.  相似文献   

13.
Single phase Mn (2.5 at%) doped ZnO nanocrystalline samples were synthesized by reverse micelle method as characterized by Rietveld refinement analysis of X-ray diffraction data, high resolution transmission electron microscopy and selected area electron diffraction analyses. The X-ray photoelectron spectroscopy and electron paramagnetic resonance (EPR) studies indicated that manganese exist as Mn2+ in ZnO lattice. DC magnetization measurements as a function of field and temperature, of 2.5 at% Mn doped ZnO nanoparticles annealed at 675 K, showed room temperature ferromagnetism (RTF). This observation is further confirmed by the EPR spectrum of the sample, which shows a distinct ferromagnetic resonance signal at room temperature. These results indicate that the observed RTF in Mn-doped ZnO may be attributed to the substitutional incorporation of Mn at Zn sites.  相似文献   

14.
X.M. Liu  Y.C. Zhou   《Journal of Crystal Growth》2004,270(3-4):527-534
Large quantities of ZnO nanorods have been synthesized by the seed-mediated method in the presence of polyethylene glycol at 90 °C. The products are characterized using X-ray diffraction, scanning electron microscopy, transmission electron microscopy and high-resolution transmission electron microscopy. The as-grown ZnO nanorods are uniform with a diameter of 40–70 nm and length about 2 μm. The nanorods grew along the [0 0 1] direction. Possible roles of ZnO seeds and polymer in the growth of ZnO nanorods are also discussed.  相似文献   

15.
Gallium nitride (GaN) nanospindles have been synthesized via a solid-state reaction at a low-temperature condition. X-ray powder diffraction (XRD), Raman spectrum and high-resolution transmission electron microscopy (HRTEM) revealed that the synthesized GaN crystallized in a hexagonal structure and displaying spindly particles morphology has an average diameter of 100 nm and length of 400 nm X-ray photoelectron spectroscopy (XPS) of the sample gave the atomic ratio of Ga and N of 1.04:1. Room-temperature photoluminescence (PL) spectrum showed that the as-prepared product had a peak emission at 372 nm. The possible formation mechanism of the wurtzite GaN is briefly discussed.  相似文献   

16.
High quality zinc oxide (ZnO) films were obtained by thermal oxidation of high quality ZnS films. The ZnS films were deposited on a Si substrate by a low-pressure metalorganic chemical vapor deposition technique. X-ray diffraction spectra indicate that high quality ZnO films possessing a polycrystalline hexagonal wurtzite structure with preferred orientation of (0 0 2) were obtained. A fourth order LO Raman scattering was observed in the films. In photoluminescence (PL) measurements, a strong PL with a full-width at half-maximum of 10 nm around 380 nm was obtained for the samples annealed at 900°C at room temperature. The maximum PL intensity ratio of the UV emission to the deep-level emission is 28 at room temperature, providing evidence of the high quality of the nanocrystalline ZnO films.  相似文献   

17.
Tungsten trioxide (WO3) nanobelts in tetragonal structure were grown on Si substrates by a hot-wall chemical vapor deposition (CVD) method without using catalysts. The products were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), Raman spectroscopy, and photoluminescence (PL) spectrum. The width of the nanobelts is in the range of 50–100 nm with width-to-thickness ratios of 5–10 and lengths of up to tens of micrometers. These nanobelts grew along the [0 0 1] direction and can be identified as the tetragonal WO3 structures. Raman and PL measurements indicate the high quality of the nanobelts. The vapor–solid growth mechanism could be applicable in our experiment.  相似文献   

18.
Large-area (>1 cm2) freestanding translucent orthorhombic boron nitride (oBN) films have been synthesized by magnetron sputtering at a low radio-frequency power of 120 W. The structural characterizations were performed by means of X-ray diffraction, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. It is demonstrated that oBN is a direct band gap semiconductor (Eg∼3.43 eV). Excited by ultraviolet laser (wavelength at 325 nm), the oBN films emit strong white light, which can be seen by the naked eyes in the dark. In the photoluminescence spectrum, besides the ultraviolet near-band-edge radiative recombination emission, there are three visible emission bands (centered at 400, 538, and 700 nm) arising from the defect-related deep-level centers of oBN, which are mixed to form the white light emission. The hardness and elastic modulus of oBN films are 11.5 and 94 GPa, respectively, examined by nanoindentation measurements.  相似文献   

19.
A series of ZnO films were grown on GaAs(0 0 1) substrates at different growth temperatures in the range 250–720°C by metalorganic chemical vapor depostion. Field emission scanning electron microscopy was utilized to investigate the surface morphology of ZnO films. The crystallinity of ZnO films was investigated by the double-crystal X-ray diffractometry. The optical and electrical properties of ZnO films were also investigated using room-temperature photoluminescence and Hall measurements. Arrhenius plots of the growth rate versus reciprocal temperature revealed the kinetically limited growth behavior depending on the growth temperature. It was found that the surface morphology, structural, optical and electrical properties of the films were improved with increasing growth temperature to 650°C. All the properties of the film grown at 720°C were degraded due to the decomposition of ZnO film.  相似文献   

20.
We have performed a detailed investigation of the metal-organic chemical vapor deposition (MOCVD) growth and characterization of InN nanowires formed on Si(1 1 1) substrates under nitrogen rich conditions. The growth of InN nanowires has been demonstrated by using an ion beam sputtered (∼10 nm) Au seeding layer prior to the initiation of growth. We tried to vary the growth temperature and pressure in order to obtain an optimum growth condition for InN nanowires. The InN nanowires were grown on the Au+In solid solution droplets caused by annealing in a nitrogen ambient at 700 °C. By applying this technique, we have achieved the formation of InN nanowires that are relatively free of dislocations and stacking faults. Scanning electron microscopy (SEM) showed wires with diameters of 90–200 nm and lengths varying between 3 and 5 μm. Hexagonal and cubic structure is verified by high resolution X-ray diffraction (HR-XRD) spectrum. Raman measurements show that these wurtzite InN nanowires have sharp peaks E2 (high) at 491 cm−1 and A1 (LO) at 591 cm−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号