首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Epitaxial thin films of TmFeCuO4 with a two-dimensional triangular lattice structure were successfully grown on yttria-stabilized-zirconia substrates by pulsed laser deposition and ex situ annealing in air. The films as-deposited below 500 °C showed no TmFeCuO4 phase and the subsequent annealing resulted in the decomposition of film components. On the other hand, as-grown films deposited at 800 °C showed an amorphous nature. Thermal annealing converted the amorphous films into highly (0 0 1)-oriented epitaxial films. The results of scanning electron microscopic analysis suggest that the crystal growth process during thermal annealing is dominated by the regrowth of non-uniformly shaped islands to the distinct uniform islands of hexagonal base.  相似文献   

3.
We have studied structural, magnetic, and optical transport properties of LaMnO3 (LMO) thin films grown on SrTiO3. While the stoichiometric LMO is an insulating antiferromagnet, it tends to be a ferromagnetic insulator when grown as thin films. By exploring the majority of growth parameters, we have found that the bulk-like electronic and magnetic phases can be stabilized by growing thin films under reducing atmospheres and by using more energetic laser processes. These conditions are found to reduce the La deficiency in the film resulting in the greatly improved cation stoichiometry. Since oxides are prone to reduce the oxygen content and to alter the cation ratio under such growth conditions, it suggests that the cation and oxygen stoichiometries in complex oxide thin films can be improved by properly optimizing the growth parameters.  相似文献   

4.
Ga2O3 nanobelts were synthesized by gas reaction at high temperature in the presence of oxygen in ammonia. X-ray diffraction and chemical microanalysis revealed that the nanostructures were Ga2O3 with the monoclinic structure. Electron microscopy study indicated the nanobelts were single crystalline with broad (0 1 0) crystallographic planes. The nanostructures grew anisotropically with the growth direction of . Statistical analysis of the anisotropic morphology of the nanobelts and electron microscopy investigation of the nanobelt tips indicated that both vapor–solid and vapor–liquid–solid mechanisms controlled the growth process. The anisotropic nature of crystallographic morphology is explained in terms of surface energy.  相似文献   

5.
Cobalt ferrite (CoFe2O4) thin film is epitaxially grown on (0 0 1) SrTiO3 (STO) by laser molecular beam epitaxy (LMBE). The growth modes of CoFe2O4 (CFO) film are found to be sensitive to laser repetition, the transitions from layer-by-layer mode to Stranski–Krastanov (SK) mode and then to island mode occur at the laser repetition of 3 and 5 Hz at 700 °C, respectively. The X-ray diffraction (XRD) results show that the CFO film on (0 0 1) SrTiO3 is compressively strained by the underlying substrate and exhibits high crystallinity with a full-width at half-maximum of 0.86°. Microstructural studies indicate that the as-deposited CFO film is c-oriented island structure with rough surface morphology and the magnetic measurements reveal that the compressive strained CoFe2O4 film exhibits an enhanced out-of-plane magnetization (190 emu/cm3) with a large coercivity (3.8 kOe).  相似文献   

6.
We report the liquid-phase epitaxial growth of Zn3P2 on InP (1 0 0) substrates by conventional horizontal sliding boat system using 100% In solvent. Different cooling rates of 0.2–1.0 °C/min have been adopted and the influence of supercooling on the properties of the grown epilayers is analyzed. The crystal structure and quality of the grown epilayers have been studied by X-ray diffraction and high-resolution X-ray rocking measurements, which revealed a good lattice matching between the epilayers and the substrate. The supercooling-induced morphologies and composition of the epilayers were studied by scanning electron microscopy and energy dispersive X-ray analysis. The growth rate has been calculated and found that there exists a linear dependence between the growth rate and the cooling rate. Hall measurements showed that the grown layers are unintentionally doped p-type with a carrier mobility as high as 450 cm2/V s and a carrier concentration of 2.81×1018 cm−3 for the layers grown from 6 °C supercooled melt from the cooling rate of 0.4 °C/min.  相似文献   

7.
Single crystals of PbMg1/3Ta2/3O3 (PMT) were grown by the flux method. The PbO–Pb3O4–B2O3 system was used as a solvent. Transparent and light yellow PMT single crystals of rectangular shape and dimensions up to 10×6×4 mm3 were obtained. For the applied growth conditions only, the crystals of the perovskite structure were grown. X-ray diffraction tests showed that at room temperature PMT exhibits cubic symmetry with lattice parameter a=4.042(1) Å. Dielectric studies pointed to relaxor properties of PMT. The characteristic broad and frequency-dependent maximum of dielectric permittivity was observed at 179.7 K (1 kHz).  相似文献   

8.
This paper reports on the thermal-induced performance of hexagonal metastable In2O3 nanocrystals involving in phase transition and assembly, with particular emphasis on the assembly for the preparation of functional materials. For In2O3 nanocrystals, the metastable phase was found to be thermally unstable and transform to cubic phase when temperature was higher than 600 °C, accompanied by assembly as well as evolution of optical properties, but the two polymorphs coexisted at the temperature ranging from 600 to 900 °C, during which the content of product phase and crystal size gradually increased upon increasing temperature. The assembly of In2O3 nanocrystals can be developed to fabricate In2O3 functional materials, such as various ceramic materials, or even desired nano- or micro-structures, by using metastable In2O3 nanocrystals as precursors or building blocks. The electrical resistivity of In2O3 conductive film fabricated by a hot-pressing route was as low as 3.72×10−3 Ω cm, close to that of In2O3 single crystal, which is important for In2O3 that is always used as conductive materials. The findings should be of importance for both the wide applications of In2O3 in optical and electronic devices and theoretical investigations on crystal structures.  相似文献   

9.
We report a method for synthesizing TiO2 nanostructures by applying microwave irradiation (1200 W, 2.45 GHz, single-mode) to a Ti substrate under an atmosphere comprising of O2 and Ar. After 1200 W microwave irradiation, one-dimensional (1D) nanostructure arrays were synthesized on the surface of the substrate. The average dimensions of the 1D structures were 200 nm in length and 30 nm in diameter. The structures were single crystalline. The EDX elemental maps of the areas examined using HAADF-STEM demonstrated that Ti and O were distributed homogeneously throughout the nanostructure. Quantitative analysis of the mean atomic ratios in the nanostructures disclosed a Ti:O ratio of 0.331:0.669. XPS analysis demonstrated that the predominant oxidation state of Ti in the samples was +4. On the basis of these results, we propose a possible mechanism for the formation of the TiO2 nanostructures via microwave irradiation.  相似文献   

10.
Selective growth of WO2, W and WO3−x crystals from amorphous WO3 film by vacuum heating at 400–900°C was clarified. The grown WO3−x crystals were incommensurate structure based on crystallographic share structure. The growth process of WO2 crystal in the amorphous film was directly observed at high temperature in the electron microscope. The growth front of the WO2 crystal consumes WO3 microcrystallites with various orientations. The growth speed of the WO2 depended on WO3 microcrystallites orientation. The origin of the wavy growth front of WO2 was due to an orientation dependence of the WO3 microcrystallites.  相似文献   

11.
Multiple branched SnO2 nanowire junctions have been synthesized by thermal evaporation of SnO powder. Their nanostructures were studied by transmission electron microscopy and field emission scanning electron microcopy. It was observed that Sn nanoparticles generated from decomposition of the SnO powder acted as self-catalysts to control the SnO2 nanojunction growth. Orthorhombic SnO2 was found as a dominate phase in nanojunction growth instead of rutile structure. The branches and stems of nanojunctions were found to be an epitaxial growth by electron diffraction analysis and high-resolution electron microscopy observation. The growth directions of the branched SnO2 nanojunctions were along the orthorhombic [1 1 0] and . A self-catalytic vapor–liquid–solid growth mechanism is proposed to describe the growth process of the branched SnO2 nanowire junctions.  相似文献   

12.
Cuprous oxide (Cu2O) thin films were grown epitaxially on c-axis-oriented polycrystalline zinc oxide (ZnO) thin films by low-pressure metal organic chemical vapor deposition (MOCVD) from Copper(II) hexafluoroacetylacetonate [Cu(C5HF6O2)2] at various substrate temperatures, between 250 and 400 °C, and pressures, between 0.6 and 2.1 Torr. Polycrystalline thin films of Cu2O grow as single phase with [1 1 0] axis aligned perpendicular to the ZnO surface and with in-plane rotational alignment due to (2 2 0)Cu2O(0 0 0 2)ZnO; [0 0 1]Cu2O[1 2¯ 1 0]ZnO epitaxy. The resulting interface is rectifying and may be suitable for oxide-based p–n junction solar cells or diodes.  相似文献   

13.
YBa2Cu4O8 is a stoichiometric oxide superconductor of Tc80 K. Unlike YBa2Cu3O7−δ, this compound is free from oxygen vacancy or twin formation and does not have any microscopic disorder in the crystal. Doping with Ca raises its Tc to 90 K. The compound is a promising superconductor for technological application. Up to now, single crystals have not been grown without using specialized apparatus with extremely high oxygen pressure up to 3000 bar and at over 1100 °C due to the limited range of reaction kinetics of the compound. This fact has delayed the progress in the study of its physical properties and potential applications. We present here a simple growth method using KOH as flux that acts effectively for obtaining high-quality single crystals in air/oxygen at the temperature as low as 550 °C. As-grown crystals can readily be separated from the flux and exhibit a perfect orthorhombic morphology with sizes up to 0.7×0.4×0.2 mm3. Our results are reproducible and suggest that the crystals can be grown using a conventional flux method under ambient condition.  相似文献   

14.
Heteroepitaxial ZnO films were grown by pulsed laser deposition on various substrates such as GaN-buffered C-Al2O3, C-Al2O3, A-Al2O3, and R-Al2O3. The epitaxy nature of the films was investigated mainly by synchrotron X-ray diffraction. The results showed that the GaN interlayer plays a positive role in growing an unstrained, well-aligned epitaxial ZnO film on the basal plane of Al2O3. Importantly, the ZnO film grown on R-Al2O3 has two differently aligned domains. The dominant (1 1 0) oriented domain has much better alignment in the in-plane direction than the minor portion of (0 0 1) oriented domain, while in the out-of-plane direction the two domains have almost the same mosaic distribution.  相似文献   

15.
16.
Nickel-incorporated FeS2 single crystals with various Ni compositions of Fe0.99S2:Ni0.01, Fe0.98S2:Ni0.02, Fe0.96S2:Ni0.04, and Fe0.9S2:Ni0.1 were grown by chemical vapor transport (CVT) method using ICl3 as a transport agent. Physical properties of the Ni-incorporated FeS2 single crystals were characterized using X-ray diffraction, Raman spectroscopy, electrical conductivity, and photoconductivity (PC) measurements. By means of the analyses of the X-ray diffraction patterns, the whole series of Ni-doped FeS2 single crystals were determined to be single-phase and isostructural. Raman spectroscopy of the Ni-doped FeS2 crystals was carried out at room temperature. Raman resonant peaks of the Ni-doped FeS2 crystals demonstrate an energy red-shift behavior with respect to the increase of the dopant densities. Conductivity measurements show the resistivity of the Ni-doped FeS2 decreased as the doping concentration of Ni is increased. Nickel is an n-type dopant, which behaves like a donor level existed near the conduction band edge of the synthetic FeS2. On the other hand, dopant effect of nickel on the synthetic FeS2 also destroys the photoconductive sensitivity in the photoconductivity measurements.  相似文献   

17.
Orthorhombic Fe5(PO4)4(OH)3·2H2O single crystalline dendritic nanostructures have been synthesized by a facile and reproducible hydrothermal method without the aid of any surfactants. The influences of synthetic parameters, such as reaction time, temperature, the amount of H2O2 solution, pH values, and types of iron precursors, on the crystal structures and morphologies of the resulting products have been investigated. The formation process of Fe5(PO4)4(OH)3·2H2O dendritic nanostructures is time dependent: amorphous FePO4·nH2O nanoparticles are formed firstly, and then Fe5(PO4)4(OH)3·2H2O dendrites are assembled via a crystallization-orientation attachment process, accompanying a color change from yellow to green. The shapes and sizes of Fe5(PO4)4(OH)3·2H2O products can be controlled by adjusting the amount of H2O2 solution, pH values, and types of iron precursors in the reaction system.  相似文献   

18.
We have fabricated LaNiO3 and BaTiO3 films using the rf sputtering method. The LaNiO3 were deposited on Si substrates, demonstrating a (1 0 0) highly oriented structure and nanocrystalline characteristic with a grain size of 30 nm. The BaTiO3 thin films were deposited on the LaNiO3 buffer layers, and have exhibited a (1 0 0) texture with a thickness of 400 nm. A smooth interface is obtained between the LaNiO3 bottom electrode and the BaTiO3 film from cross-section observations by scanning electron microscopy. The bi-layer films show a dense and column microstructure with a grain size of 60 nm. Ferroelectric characterizations have been obtained for the BaTiO3 films. The remnant polarization and coercive field are 2.1 μC/cm2 and 45 kV/cm, respectively. The leak current measurements have shown a good insulating property.  相似文献   

19.
The details of Tm3+-doped NaGd(WO4)2 single-crystal growth are discussed, the results of precise investigations of its structural and spectroscopic characteristics, as well as the analysis of cross-relaxation process of Tm3+ ions (3H43F4, 3H63F4) in this crystal are presented. Based on the Judd–Ofelt theory, three intensity parameters, spontaneous emission probabilities, fluorescence branching ratios and fluorescence quantum efficiency from 3H4 and 3F4 levels were refined.  相似文献   

20.
Potassium lithium niobate (KLN) single crystals have attractive properties for non-linear optical applications based on frequency conversion of laser diodes in the blue range. Especially, fully stoichiometric K3Li2Nb5O15 crystals would be capable of doubling a laser light in the near UV range. Using powder X-ray diffraction and DSC experiments, we have re-investigated the 30 mol% K2O isopleth of the ternary system Li2O–K2O–Nb2O5 in order to explore the possibility of a limited existence field for this phase. From our results, it was shown that the stoichiometric KLN phase exists between 970 and 1040 °C, temperature at which it undergoes a non-congruent melting. From this conclusion, compositionally homogeneous a-axis oriented single crystals fibers of stoichiometric K3Li2Nb5O15 were successfully grown by the micro-pulling down technique with pulling rates in the range 0.3–0.7 mm min−1. The crystal length was between 10 and 120 mm for an apparent diameter near 500 μm. The fibers, characterized by optical microscopy, X-ray diffraction and Raman spectroscopy, appeared free of macro-defects and of good quality and their stoichiometric composition was also confirmed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号