首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
We report the observation of a pronounced dip in the in-plane magnetic field (H) dependence of the critical current density Jc(H) and a peak in resistance R(H) of a NbN-HoNi5 bilayer at temperatures below the magnetic ordering temperature (TCurie ≈ 3.5 K) of HoNi5, which is lower than the onset temperature (≈9 K) of superconductivity in the NbN layer. The extrema in Jc(H) and R(H) appear at fields much below the upper critical field of NbN. We attribute these features to a coupling between localized out-of-plane moments present in the magnetic film and Pearl vortices of the superconducting layer. A spin re-orientation transition of the localized moments by H breaks this coupling, leading to the observed excess dissipation.  相似文献   

2.
We investigated the dependences of the critical current density Jc on the magnetic field angle θ in YBa2Cu3O7−δ thin films with the crossed configurations of the columnar defects (CDs). To install the crossed CDs, the films were irradiated using the high energetic Xe ions at two angles relative to the c-axis. The additional peak around the c-axis appears in the Jc(θ) for all irradiated films. In lower magnetic fields, the height of the Jc(θ) peak caused by the crossed CDs with the crossing angles θi = ±10° was higher than that for the parallel CDs. It is considered that the correlation of the flux pinning by the crossed CDs along the c-axis occurs even in the case of θi = ±25°, which was also suggested by the kink behaviors of the scaling parameters of the current–voltage characteristics near 1/3 of the matching field. In higher magnetic fields, on the other hand, the height and width of the Jc(θ) peak for the crossed CD configurations rapidly reduce with increasing the magnetic field compared to the parallel ones. In the crossed CD configurations, the dispersion in the direction of CDs would prevent the correlation of flux pinning along the c-axis in high magnetic fields, which occurs in the parallel CD configurations due to the collective pinning of flux lines including the interstitial flux lines between the directly pinned flux lines by CDs.  相似文献   

3.
In this work, nano sized SiC powders were mixed with Mg and B and reacted by either a one-step insitu or two-step method resulted in different level of C substitution. X-ray diffraction shows the presence of Mg2Si signifying that the reaction between SiC and Mg occurred leading to the release of C in samples reacted in one-step method. Moreover, the much reduced value of a-axis indicates C substitution took place. Resistivity measurements showed higher intragrain scattering owing to a higher density of defects and/or impurities. These samples also show higher Hirr and Hc2 at 20 K in comparison to samples with mainly unreacted SiC (hence lower C substitution). More importantly, their Jc’s are more insensitive to high magnetic field (>4 T) at 6 K. However, at 20 K the effect of C content on Jc(H) is less pronounced. Finally, the order of magnitude of Jc(H) at both 6 K and 20 K is rather dominated by pinning.  相似文献   

4.
We report the temperature dependence of susceptibility for various pressures, magnetic fields and constant magnetic field of 5 T with various pressures on La2−2xSr1+2xMn2O7 single crystal to understand the effectiveness of pressure and magnetic field in altering the magnetic properties. We find that the Curie temperature, Tc, increases under pressure (dTc/dP=10.9 K/GPa) and it indicates the enhancement of ferromagnetic phase under pressure up to 2 GPa. The magnetic field dependence of Tc is about 26 K for 3 T. The combined effect of pressure and constant magnetic field (5 T) shows dTc/dP=11.3 K/GPa and the peak structure is suppressed and broadened. The application of magnetic field of 5 T realizes 3D spin ordered state below Tc at atmospheric pressure. Both peak structure in χc and 3D spin ordered state are suppressed, and changes to 2D-like spin ordered state by increase of pressure. These results reveal that the pressure and the magnetic field are more competitive in altering the magnetic properties of bilayer manganite La1.25Sr1.75Mn2O7 single crystal.  相似文献   

5.
The phase transition and magnetic properties of a ferromagnet spin-S, a disordered diluted thin and semi-infinite film with a face-centered cubic lattice are investigated using the high-temperature series expansions technique extrapolated with Padé approximants method for Heisenberg, XY and Ising models. The reduced critical temperature of the system τc is studied as function of the thickness of the thin film and the exchange interactions in the bulk, and within the surfaces Jb, Js and J, respectively. It is found that τc increases with the exchange interactions of surface. The magnetic phase diagrams (τc versus the dilution x) and the percolation threshold are obtained. The shifts of the critical temperatures Tc(l) from the bulk value (Tc(∞)/Tc(l) − 1) can be described by a power law lλ, where λ = 1/υ is the inverse of the correlation length exponent.  相似文献   

6.
We have investigated the influence of partial pressure of water vapor [P(H2O)] in the crystallization process on the superconducting properties of YBa2Cu3O7−y (YBCO) films fabricated by a trifluoroacetate–metal organic deposition (TFA–MOD) method. The starting solution with different compositions of Y: Ba:Cu = 1.0:2.0:3.0 and 1.0:1.5:2.0 were studied. The critical current density (Jc) values of YBCO films fabricated from Y:Ba:Cu = 1.0:2.0:3.0 starting solution significantly increase (1.71 → 2.55 MA/cm2) with increasing P(H2O) from 12.3 to 47.4 kPa. In the YBCO films fabricated from Y:Ba:Cu = 1.0:1.5:2.0 starting solution, high Jc values of over 2.5 MA/cm2 were recognized in a wide range of P(H2O) (12.3–47.4 kPa). One of the reason for Jc improvement is the suppression of coarsening of the secondary phases grains such as Y2Cu2O5 and CuO due to increase in growth rate of YBCO layer in the crystallization process. The Jc values of all YBCO films decreased as P(H2O) increased up to 70.1 kPa. This degradation of Jc values may be caused by difference of crystal growth mechanism in high growth rate.  相似文献   

7.
We measured resistivity and transport critical current density, Jc, as a function of DC magnetic field and the angle (?) between the surface of the film and the magnetic field on ex-situ annealed, c-axis oriented Bi-2223 thin films fabricated by DC sputtering method. Irreversibility field (μ0Hirr) and upper critical field (μ0Hc2) were determined from the resistivity versus the applied magnetic field graph. It is observed that critical temperature (Tc), μ0Hirr,μ0Hc2 and Jc of the films strongly depend on the direction and strength of the field. While Tc of the film without magnetic field is observed to be about 102 K, it is found to decrease to 90 K (85 K) for the applied field perpendicular (parallel) to c-axis of the film. Not only were μ0Hirr(0) and μ0Hc2(0) values determined from the μ0Hirr and μ0Hc2 versus temperature graphs, respectively, but also penetration depths and coherence lengths were interpreted. Anisotropy of the film was also discussed by means of the change of irreversibility as a function of angle. Moreover at 4.2 K, Jc was observed to be 3000 A/cm2 at zero field; however, it was found to abruptly decrease to 1982 (1 1 2 0) A/cm2 under low magnetic field at ?=0° (?=90°), which indicates that anisotropic Jc behavior of the film is intrinsic. Furthermore, we provided a theoretical analysis of the obtained results in the framework of intrinsic pinning theory of superconductors. Microstructural properties of the produced films were also reinvestigated by X-ray diffractometer (XRD) and scanning electron microscopy (SEM) measurements. XRD patterns indicate that the films are c-axis oriented based on the prominent (0 0 l) peaks. SEM images show needle-like grain structures dominate the surface morphology of the films.  相似文献   

8.
Intermixing, growth, geometric and electronic structures of gold films grown on antiferromagnetic stacking body-centered-tetragonal manganese (0 0 1) films were studied by means of scanning tunneling microscopy/spectroscopy at room temperature in ultra-high vacuum. We found stable ordered c(2 × 2)-MnAu(0 0 1) alloy layers after depositing Au on pure Mn layers. Since at the fourth layer (5 × 23)-like Au reconstruction appears instead of the c(2 × 2) structure and local density of states peaks obtained on the c(2 × 2)-MnAu surface disappear, pure Au layers likely grow from the fourth layer.  相似文献   

9.
Tin-compounds were doped into YBa2Cu3O7−δ (YBCO) films as pinning centers to enhance Jc in magnetic fields. YBCO films were grown by a metal organic deposition process using tri-fluoroacetates starting solutions. Tin-acetylacetonate salts were then dissolved into the starting solution as pinning centers. Jc of the YBCO films with tin-acetylacetonates were enhanced in all magnetic field angles. Transmission electron microscopy (TEM) and TEM-EDS (Energy Dispersive X-ray Spectroscopy) observations revealed the existence of tin-compound particles with the size of about 30 nm in the YBCO film. These nano particles were distributed randomly in the film and were considered to act as 3-dimentional pinning centers.  相似文献   

10.
Effect of 3.4 wt.% C and 5 wt.% SiC doping into the standard in situ (IN) process and mechanically alloyed (MA) MgB2 was studied. Powders of IN and MA process were carried out in air and in argon filled glove box, respectively. Wire samples were prepared by two-axial rolling deformation of IN and MA powders inside the Ti tube. Titanium as sheath material allows to use higher sintering temperatures, we used 700 °C and 800 °C for 30 min in Argon. Critical current densities (Jc) were measured at variable temperatures 4.2 K, 10 K, 15 K and 20 K in the external magnetic fields ranging to 15 T. Critical temperatures, upper critical fields and irreversibility fields of IN and MA with SiC and C additions are compared and discussed. The highest transport properties were observed for wires with MA SiC doped MgB2 in the whole scale of temperatures 4.2–20 K. Upper critical field was rapidly enhanced in the case of carbon doped MA samples at 4.2 K. MA samples have shown decreased Jc values for higher temperatures (15 K, 20 K), in some case even worse than for the not doped reference IN sample. Carbon substitution and grain connectivity of analyzed samples are compared and discussed. Presented results show that for 20 K applications some new ways (additions) have to be found for increasing the Jc substantially.  相似文献   

11.
A correlation between the second critical field Hc2 of the helix to paramagnetic transition and the magnetic specific heat C-peak was found in ZnCr2−xAlxSe4 spinel single crystals with x=0.15, 0.23. The specific heat peak is anomalously sharp for all finite magnetic fields used here and this points to a first order magneto-structural transition (from cubic to tetragonal symmetry). The C(T)-peak is increasingly suppressed as the external field increases. Approaching the Neel temperature TN, a broad ac-magnetic susceptibility peak is observed for zero dc-magnetic field. That peak does not show an energy loss and thus points towards a return to a second order type of transition. The magnetic contribution to the specific heat displays a sharp peak at TN and is maximal at the spin fluctuation temperature Tsf=34 K. Tsf is related to the maximum of the magnetic susceptibility at Tm=40 K (at 50 kOe) in the spin fluctuation region, as evidenced by the entropy exceeding 90% of the entropy calculated classically for the complete alignment of the Cr spins, (2−x)R ln(2S+1). The X-ray photoelectron spectroscopy (XPS) data indicate that Al-substitution does not affect Cr3+ 3d3 electronic configuration.  相似文献   

12.
We have fabricated high-quality FeSe1−x superconducting films with a bulk Tc of 11–12 K on different substrates, Al2O3(0 0 0 1), SrTiO3(1 0 0), MgO(1 0 0), and LaAlO3(1 0 0), by using a pulsed laser deposition technique. All the films were grown at a high substrate temperature of 610 °C, and were preferentially oriented along the (1 0 1) direction, the latter being to be a key to fabricating of FeSe1−x superconducting thin films with high Tc. According to the energy dispersive spectroscopy data, the Fe:Se composition ratio was 1:0.90 ± 0.02. The FeSe1−x film grown on a SrTiO3 substrate showed the best quality with a high upper critical magnetic field [Hc2(0)] of 56 T.  相似文献   

13.
Polycrystalline samples of a new rare-earth series RPd5Al2 crystallizing in the tetragonal ZrNi2Al5-type structure have been prepared. Their physical properties by electrical resistivity ρ, magnetic susceptibility χ, magnetization M and specific heat Cp measurements are reported. The ingots are composed of elongated grains preferentially aligned in the c direction; therefore, measurements were conducted parallel and perpendicular to the grains. Antiferromagnetic ordering appears in R=Ce, Nd, Gd, and Sm at low temperatures. CePd5Al2 has two AFM transitions at 4.1 and 2.9 K and ρ(T) indicates a Kondo metal behavior with large anisotropy. In PrPd5Al2 no magnetic transition was observed down to 0.4 K. The Cp(T) shows a broad peak around 13 K due to the CEF effect, suggesting a non-magnetic singlet ground state. In NdPd5Al2, χ(T) shows anisotropy and the Cp(T) shows a sharp peak at 1.2 K. The magnetic entropy at 3 K is very close to Rln2, indicating a Kramers doublet ground state. In SmPd5Al2, Cp(T) shows a magnetic transition at 1.7 K. Cp(T) for GdPd5Al2 shows a peak at 6 K, followed by a broad anomaly around 3 K. Within this series, TN's for CePd5Al2 and NdPd5Al2 clearly deviate from the relation predicted by de Gennes scaling, which is ascribed to the CEF effect.  相似文献   

14.
Summary In this work we report on the anisotropic physical properties of silver-sheathed Bi-2223 tapes fabricated by means of hot extrusion and repeated pressing and sintering processes. The obtained Bi-2223/Ag short tapes, having critical current densitiesJ c of 20–30 kA/cm2 at 77 K, 0 T, were measured in external magnetic fields up to 0.5T applied in two different orientations (i.e. μ0H‖(a,b)-planes and μ0H ⊥(a,b)-planes). The magnetic characterizations were performed in a wide range of temperatures and magnetic fields to study the first magnetization curve of tapes evaluating the lower critical fields μ0Hc1⊥ab and ⊥0Hc1#x2016;ab and their dependences on temperature. TheJ c values at different fields in the temperature range 4.6–90 K, calculated from the magnetization data by the critical state model, are also presented. Paper presented at the ?VII Congresso SATT?, Torino, 4–7 October 1994.  相似文献   

15.
Isothermal magnetization near a fishtail peak in nanocrystalline B1 NbCy encapsulated in multiwall carbon nanocages is studied within the time window of 100 < t < 4000 s. The current density J exhibits a linear logarithmic time decay. The effective activation energy Ueff increases linearly with temperature T and is independent of applied magnetic field H. The results of J(t) and Ueff (T, H) are consistent with the Anderson–Kim flux–creep model for thermally activated motion of uncorrelated vortices or vortex bundles over a net potential barrier Ueff. Ueff at a fishtail peak field Hfp evolves quickly above a fishtail peak temperature Tfp, but slowly below that temperature. The result suggests that a decrease of flux viscosity coefficient above Tfp at Hfp is the origin of the fishtail peak in nanocrystalline B1 NbCy encapsulated in multiwall carbon nanocages.  相似文献   

16.
Ru/CoPtCr-SiO2 bilayer prepared at 4 and 26 mTorr of Ar gas pressure for the deposition of Ru and CoPtCr-SiO2 layers, respectively, exhibits better magnetic properties suitable for perpendicular magnetic recording media when they are deposited at room temperature on a Pt seed layer prepared at 450 °C. The Ru-O seed layer fabricated by a reactive sputtering method improves the Ru (0 0 1) texture deposited on a Ru-O layer. The Ru-O/Ru hybrid type of underlayer causes the improvement of the c-axis orientation of CoPtCr crystallites in the CoPtCr-SiO2 layer deposited on it. Fine granulation of magnetic grains in the CoPtCr-SiO2 layer is also attained when they are deposited on the Aramid type of flexible tape substrates.  相似文献   

17.
The magnetoresistive effect of CuPt(8 nm)/SiO2(5 nm)/Si(50,000 nm)/SiO2(5 nm)/CuPt(8 nm) structure made by e-beam evaporation technique is studied in this work. Variation in magnetoresistance obtained by I-V measurements at 77 K and in the presence of less than 5 mT magnetic field applied in parallel to the surface is investigated. We have found that this structure exhibit large magnetoresistance in low magnetic fields (i.e. <5 mT). Our results also indicate that the variation in magnetoresistance in the presence of external magnetic field has oscillatory behavior and has the maximum value of 3295%. This structure due to its high sensitivity to low magnetic fields can also be used as an active element in magnetic field sensor devices.  相似文献   

18.
We have investigated current transport property in Gd1Ba2Cu3O7−δ coated conductor with artificial pinning centers in a wide range of temperature, magnetic field, B up to 27 T, and field angle. Due to the additional c-axis correlated pins, critical current density, Jc in B//c was enhanced and the improvement was observed in wide range of B. On the other hand, around B⊥c below 65 K, the angular dependence of n-value showed a valley-like behavior, although the Jc was increasing. In addition, the temperature dependence of the pinning force density defined as Jc × B was not scaled on an expected master curve. These results indicate the pinning in B⊥c is governed by different mechanism below 65 K and high magnetic field.  相似文献   

19.
Current–voltage (IV) characteristics and critical current density, Jc, for the onset of vortex motion were measured at different magnetic fields, H, and temperatures, T, in a superconducting (S)/ferromagnetic (F) bilayer and in a single Nb film. We choose Nb as a superconductor and a weak ferromagnetic alloy, Pd1−xNix with x = 16, as F. We found that Jc was smaller for the S/F bilayer with respect to the single Nb film. The result was related to the reduced value of the superconducting order parameter in the bilayer.  相似文献   

20.
The desorption of NO molecules from a thick C60 film is reported. A thermal desorption spectrum indicates two adsorption sites with binding energies of Eb = 0.30 eV and 0.55 eV. For laser desorption the fullerene surface is exposed to NO and excited by 7 ns UV laser pulses. Desorbing NO molecules are recorded state selectively as well as time resolved. The time-of-flight measurement indicates three different desorption pathways. A fast channel shows rovibronic temperatures of Trot(v″ = 0) = 370 K, Trot(v″ = 1) = 390 K and Tvib = 610 K as well as strong rotational-translational coupling. The desorption yield for the fast channel increases linearly with pulse energy with a desorption cross section of σ = (5.1 ± 0.9) × 10−17 cm2. Dominating the signal for small J″ values is a slow channel with low rotational and translational temperatures of about 110 K. We assign this peak to a laser-induced thermal desorption. For large pump-probe delays the data deviate from the Maxwellian flux distribution and a third channel appears with extremely late arrival times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号