首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
By a facile LiNO3 flux method, lithium manganese oxide composites (xLi4Mn5O12? yLi2MnO3) were synthesized using a hierarchical organization precursor of manganese dioxide. Li4Mn5O12 and Li2MnO3 have spinel and rocksalt structures, respectively. The lithiation and structural transformation from the precursor to the composites occurred topotactically from exterior toward interior in the precursor particle with the increase of reaction time, and the composites had core-shell spinel@rocksalt structures in addition to the original hierarchical core-shell organization. The electrochemical measurements at 50 °C after 50 cycles confirmed that a typical spinel@rocksalt cathode had higher capacity retention (87.1%) than that with the composition close to the stoichiometric spinel (64.6%), indicating the Li2MnO3 shell can improve cycling stability for the composite electrode at elevated temperature.  相似文献   

3.
Polarised positive muons can be implanted into any type of material and rapidly thermalize, then the local magnetic environment dictates the evolution of muon spin vectors and provokes the muon depolarisation. The muon spin relaxation (μSR) technique provides interesting information on magnetism and spin dynamics in spinel lithium manganates insertion compounds. In this work, we compare the behaviour of muons into a lithium-rich spinel manganese oxide and its lithium extracted product. The chemical extraction of lithium from Li1.33Mn1.67O4, where all the manganese is MnIV, is essentially a lithium by proton ion exchange process to give a protonated manganese oxide with spinel structure, H+–MnO2. Muons clearly have showed the presence of protons in H+–MnO2, and the movement of lithium ions or protons at increasing temperatures in both samples. Muons are quasi-static in these compounds, and they are located both in ‘regular’ lithium and proton sites and also in interstitial sites of the spinel structure, these latter being used during diffusion of lithium ions. Below 50 K, static muons behave as in a paramagnet, where Mn magnetic spins are slowing down and ordering near 6 and 14 K in the protonated and lithiated spinels, respectively.  相似文献   

4.
In this paper, the effect of divalent cation substitution on the structure and magnetic properties in La2-2xSr1Ca2xMn2O7 have been investigated systematically using bulk samples with a wide doping concentration range 0.25≤x≤1.00. Replacing trivalent La ions by divalent Ca ions results in the weakening and then disappearance of the long-range ferromagnetic (FM) ordering, the formation of spin canting, antiferromagnetic (AFM) ordering and low-temperature spin-glass. These results show that increasing the hole-doping concentration significantly suppresses the FM state. We suggest that this variation of magnetic properties is related to the competition of the FM and AFM interactions resulting from the change of Mn3+/Mn4+ ratio and Jahn-Teller-type lattice distortion of MnO6 octahedra due to the introduction of Ca2+ ions.  相似文献   

5.
Spinel-type lithium manganese oxides are considered as promising cathode materials for lithium-ion batteries. Trace amounts of Li2MnO3 usually occur as a secondary phase in lithium-manganese spinels in the common high-temperature, solid-state synthesis, affecting the overall Li–Mn stoichiometry in the spinel phase and thereby the electrochemical performance. However, the formation of Li2MnO3 lower than 1 wt.% can hardly be quantified by the conventional analytical techniques. In this work, we synthesized lithium-manganese spinels with different Li/Mn molar ratios and demonstrate that electron paramagnetic resonance (EPR) enables quantifying trace amounts of Li2MnO3 below 10?2 wt.% in the synthesized products. The results reveal that the formation of Li2MnO3 secondary phase is favored by lithium excess in the synthesis. Based on the quantitative evaluation of the EPR data, precise determining Li–Mn stoichiometry in the spinel phase in Li1+xMn2?xO4 materials can be assessed. Accordingly, it is possible to estimate the amount of lithium on 16d-sites in the Li-rich manganese spinels.  相似文献   

6.
Detailed investigations have been undertaken of the lithium for manganese substitution effect on the LiMn2O4, in the system LixMn3−xO4, for 0.95≤x≤1.05, that is for the nearly stoichiometric lithium content. Synchrotron X-ray measurements have been performed in the temperature range 10–300 K. The diffraction experiments were carried out at the DESY-HASYLAB high-resolution powder diffractometer (beamline B2), equipped with a closed-cycle He-cryostat. Very small changes in the lithium content influence clearly the low-temperature crystal structure of LixMn3−xO4, spinels and the nature of phase transitions. It was found that for x=0.95 the sample remains tetragonal in the whole 10–300 K temperature range. The stoichiometric LiMn2O4 transforms from cubic to orthorhombic at about 280 K. For x=1.0125 the temperature of phase transition from cubic to orthorhombic decreases down to about 260 K, whereas for x=1.025 the transformation goes from cubic to tetragonal phase, at the temperature 220 K. No phase transition has been observed for the cubic sample with x=1.0375. These results partly explain the divergences in recent reports on the low-temperature structure and phase transformations of lithium manganese oxides.  相似文献   

7.
Pure LiMn2O4 and lithium manganese oxide spinels with partial replacement of manganese by cobalt up to 20 mole%, LiCoxMn2−xO4, were prepared. The effect of extended cycling on the crystal structure was investigated. A capacity decrease with increasing cobalt content was observed in the potential range about 4100 mV vs. Li/Li+. Cycling behavior is significantly improved, compared to LiMn2O4. LiCoxMn2−xO4 is discharged in a single phase reaction in the upper potential range around 4100 mV vs. Li/Li+, whereas pure LiMn2O4 shows a two phase behavior. LiMn2O4 shows a significant broadening of peaks in plots of differential capacity and change in shape of the voltage profile upon extended cycling. LiCoxMn2−xO4 shows neither broadening nor change. Voltage profiles and plots of the differential capacity differ significantly compared to spinels with lithium substitution, Li1+xMn2−xO4. In contrast to Li1+xMn2-xO4, LiCoxMn2-xO4 is discharged in a two step process in the range of 0 ≤ × ≤ 0,5. Paper presented at the 3rd Euroconference on Solid State Ionics, Teulada, Sardinia, Italy, Sept. 15–22, 1996  相似文献   

8.
Thin Li1+xMn2O4−δ films were deposited on several substrate materials (stainless steel, p-doped silicon and glassy carbon) by pulsed laser deposition. To obtain the correct thin film stoichiometries, targets with a different amount of excess lithium were required (Li1.03Mn2O4 + xLi2O; x = 2.5 and 7.5 mol%). The resulting polycrystalline thin films were characterized with respect to their morphology and electrochemical activity. It was found that only thin Li1+xMn2O4−δ films deposited on stainless steel and glassy carbon showed the typical insertion and deinsertion peaks of Li+ during cycling.  相似文献   

9.
Solid solution material Li1.2Ni0.16Co0.08Mn0.56O2 (0.5Li2MnO3?0.5LiNi0.4Co0.2Mn0.4O2) is obtained through rheological phase method and further treated in ammonium persulfate solution. The post-treatment significantly decreases the charging capacity above 4.5 V and enhances the columbic efficiency in the initial cycle. Along with the higher efficiency, the cycling stability and the rate capability both get improved. The improvement mechanism is investigated in terms of XRD, XPS, Raman spectrometry, and ICP-AES. The results confirm that (NH4)2S2O8 treatment leads to Li+ removal from Li2MnO3 component while the layered structure of the solid solution phase is well maintained. After being treated in 30% (NH4)2S2O8 solution, 95% columbic efficiency is observed on Li1.2Ni0.16Co0.08Mn0.56O2 in the first cycle and it also shows a near 200 mAh g?1 capacity at 4C current rate.  相似文献   

10.
Based on X-ray powder diffraction analysis of homogeneous phases and heterogeneous compositions with the general formula Ln2?x Mn x O3±δ (Ln = Sc, Pr, Nd, Sm, Eu; 0.90 ≤ x ≤ 1.20; Δx = 0.02), which were obtained by a ceramic synthesis from oxides in air in the temperature range 900–1400°C, the solubility boundaries of oxides Ln2O3 and manganese in LnMnO3±δ are determined. The results are represented in the form of fragments of phase diagrams of the systems Sc-Mn-O, Pr-Mn-O, Nd-Mn-O, Sm-Mn-O, and Eu-Mn-O in air. It is assumed that the solubility of Ln2O3 oxides in LnMnO3±δ is determined by defects of the crystalline structure, and that of manganese oxides is determined by the disproportionation reaction 2Mn3+ = Mn2+ + Mn4+ with subsequent partial substitution of Ln3+ ions by divalent manganese in cuboctahedral sites of a perovskite-like crystal lattice.  相似文献   

11.
The crystalline and magnetic structures and magnetic properties of La1?x BixMnO3+δ (0.4 ≤ x ≤ 0.6, 0 ≤ δ ≤ 0.06) manganites have been studied. The solid solutions having the stoichiometric oxygen content are shown to be orbitally ordered A-type antiferromagnets. An increase in the oxygen content above the stoichiometric value is found to cause Mn4+ ions in the perovskite lattice, to remove the cooperative Jahn-Teller distortions, and to form a long-range ferromagnetic order. This order becomes broken as the concentration of the tetravalent manganese ions increases further. The tendency toward breaking the ferromagnetic order increases with the bismuth content. The magnetic properties are interpreted in terms of superexchange interactions on the assumption of local lattice distortions induced by anisotropy of the 6s 2(Bi3+)-2p 6(O2?) chemical bonds.  相似文献   

12.
Density functional theory is used to understand the response of the transition metal-oxygen octahedra in LixMn2O4 and LixNi0.5Mn1.5O4 to lithium intercalation and de-intercalation. Electronic structure computations on these compounds for x=0, 0.5 and 1 indicate that the 3d DOS of Mn is almost unaffected to variations in x. On the other hand, the oxygen 2p-DOS and to a lesser extent Ni 3d DOS are found to be sensitive to perturbation. The observations are explained on the grounds of self-regulating response, characteristic of systems having localized d states that communicate with a covalent manifold.  相似文献   

13.
Thermal diffusivities of LixMn2O4 (x=0.9, 1.0 and 1.1) polycrystalline pellets are determined by photoacoustic technique in the reflection configuration, at two temperatures, 298 K and 280 K, above and below their Jahn–Teller phase transition temperature (290 K). The diffusivities of LixMn2O4 at 280 K show a drastic reduction from their corresponding room temperature values (298 K) and the percentage of reduction in the thermal diffusivity for LixMn2O4 increases with their Li content. These effects are associated with the reduction in crystal symmetry due to structural deformation by Jahn–Teller distortion observed in LixMn2O4 below its transition temperature. PACS 78.20.Nv; 82.47.Aa; 63.20.Mt  相似文献   

14.
We report on the vibrational properties of spinel LiMn2O4 and its electrochemically delithiated forms LixMn2O4. Raman scattering and infrared absorption spectra have been studied as a function of the delithiation content in the wavenumber range 50–700 cm−1. Results show that lithium ions can be extracted at room temperature to obtain Lix[Mn2]O4 (0.3≤x≤1.0) without disrupting the [Mn2]O4 array. The normal modes of the spinel LiMn2O4 have been discussed in the O h 7 symmetry and vibrations due to lithium ions with their oxygen neighbors have been identified at ca. 400 cm−1. Paper presented at the 3rd Euroconference on Solid State Ionics, Teulada, Sardinia, Italy, Sept. 15–22, 1996  相似文献   

15.
The structures and magnetic states of stoichiometric lithium manganite LiMn2O4 and manganites and titanates Li1.33Mn1.67O4 and Li1.33Ti1.67O4 with excess lithium in both the initial (as-synthesized) state and after irradiation by fast (E eff ≥ 1 MeV) neutrons with a fluence of 2 × 1020 cm−2 have been studied using neutron diffraction, X-ray diffraction, and magnetic methods. It has been established that the irradiation brings about a noticeable redistribution of manganese, titanium, and lithium cations over nonequivalent tetrahedral (8a) and octahedral (16d) positions of a spinel lattice. This structural disorder causes a radical change in the physical properties of the materials under study. The charge order existing in the initial LiMn2O4 sample is destroyed. There arises a strong intersublattice indirect exchange interaction Mn(8a)-O-Mn(16d). The disorder is accompanied by the antiferromagnet-ferrimagnet (LiMn2O4) and paramagnet-ferrimagnet (Li1.33Mn1.67O4) magnetic transitions.  相似文献   

16.
Layered cathode material Li1.2Ni0.2Mn0.6O2 has been synthesized using a coprecipitation method and coated by MnO2 with varying amounts (1, 3, 5, and 9 wt%). The physical properties and electrochemical performances of the materials are characterized by XRD, SEM, charge/discharge tests, cycle life, and rate capability tests. XRD patterns show that the pristine and coated Li1.2Ni0.2Mn0.6O2 powders exhibit layered structure. The discharge capacities and coulombic efficiencies of Li1.2Ni0.2Mn0.6O2 in the first cycle have been improved and increase with the increasing content of coated MnO2. The 9 wt% MnO2-coated Li1.2Ni0.2Mn0.6O2 delivers 287 mAhg?1 for the first discharge capacity and 86.7 % for the first coulombic efficiency compared with 228 mAhg?1 and 65.9 % for pristine Li1.2Ni0.2Mn0.6O2. However, the 5 wt% MnO2-coated Li1.2Ni0.2Mn0.6O2 shows the best capacity retention (99.9 % for 50 cycles) and rate capability (88.6 mAhg?1 at 10 C), while the pristine Li1.2Ni0.2Mn0.6O2 only shows 91.5 % for 50 cycles and 25.3 mAhg?1 at 10 C. The charge/discharge curves and differential capacity vs. voltage (dQ/dV) curves show that the coated MnO2 reacts with Li+ during the charge and discharge process, which is responsible for higher discharge capacity after coating. Electrochemical impedance spectroscopy results show that the R ct of Li1.2Ni0.2Mn0.6O2 electrode decreases after coating, which is responsible for superior rate capability.  相似文献   

17.
《Solid State Ionics》2006,177(17-18):1421-1428
Spinel lithium manganese oxides can be used as Li+ adsorbent with topotactical extraction of lithium. In this paper, the solid state methods were introduced to prepare spinel lithium manganese precursors with Li2CO3 and LiOH·H2O as different Li sources. The Li+ uptake was studied to clarify the correction between Li+ adsorption capacity and the preparation conditions of precursors, including different Li sources, Li/Mn mole ratios and heating time. The results indicated that the Li+-extracted materials prepared with LiOH·H2O and MnCO3 usually have higher Li+ adsorption capacity than Li2CO3 and MnCO3, and an ascending trend was found in Li+ uptake with increasing Li/Mn mole ratio in the preparation of the precursor, but it is not proportional. The Mn2O3 impurities could be the primary reason for decreasing Li+ adsorption capacity. Furthermore, it is concluded that the Li+-extracted materials obtained from spinel manganese oxides synthesized with Li/Mn = 1.0 can serve as selective Li+ absorbents due to its high selectivity and large adsorption capacity.  相似文献   

18.
Li0.5Fe2.5−xMnxO4 (0≦x≦1.0) powders with small and uniformly sized particles were successfully synthesized by microwave-induced combustion, using lithium nitrate, ferric nitrate, manganese nitrate and carbohydrazide as the starting materials. The process takes only a few minutes to obtain as-received Mn-substituted lithium ferrite powders. The resultant powders annealed at 650 °C for 2 h and were investigated by thermogravimeter/differential thermal analyzer (TG/DTA), X-ray diffractometer (XRD), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM), and thermomagnetic analysis (TMA). The results revealed that the Mn content were strongly influenced the magnetic properties and Curie temperature of Mn-substituted lithium ferrite powder. As for sintered Li0.5Fe2.5−xMnxO4 specimens, substituting an appropriate amount of Mn for Fe in the Li0.5Fe2.5−xMnxO4 specimens markedly improved the complex permeability and loss tangent.  相似文献   

19.
In the manganites L1?xMxMnO3 (L = La, Nd, Pr, …; M = Sr, Ba, Ca, …), the doping concentration introduces a mixed valence (Mn3+, Mn4+) which governs the magnetic and electric properties of the compound. Mn3+ (S = 2) is scarcely observed in electron spin resonance (ESR). In contrast, Mn4+ (S = 3/2), is a good ESR probe. However, X-band measurements show an enhanced Mn4+ susceptibility, which is the signature of some kind of coupling of the Mn4+ ions with the Mn3+ ions, but its exact nature is still controversial. We present multifrequency ESR experiments (9–385 GHz) obtained on different systems (La1?δMnO3, La1?xMnO3, La1?xCaxMnO3, and Nd1?xCaxMnO3) in the low-concentration range (0 <x< 0.33). In the paramagnetic regime, the Mn3+ spectrum cannot be observed because of fast relaxation. The signal arises from polarons, whose size, temperature and magnetic field dependences vary with M andx. The single line observed in the metallic compound evolves towards a double-peak structure visible at high frequency in La0.97MnO3. Its evolution with temperature below the magnetic transition reveals the presence of manganese ions in a different magnetic environment, i.e., phase separation. The magnetic order of the separated phase is not ferromagnetic. It is a more complex order, which depends substantially on the nature of the cation M.  相似文献   

20.
X-ray photoelectron spectroscopy is used to study Mn3O4, Mn2O3, and MnO2 manganese oxide surfaces subjected to mechanical activation by means of high intensity grinding. It is found that Mn2O3 is the most thermodynamically stable of these oxides; mechanical activation converts the surface layers of Mn3O4 and MnO2 into this intermediate oxide. The chemical stability of activated Mn2O3 with respect to actions of the environment was considerably elevated. This result is explained in terms of features of the structural state of the mechanically activated surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号