首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A simple method was used to fabricate flavin adenine dinucleotide (FAD)/NiOx nanocomposite on the surface of glassy carbon (GC) electrode. Cyclic voltammetry technique was applied for deposition nickel oxide nanostructures onto GC surface. Owing to its high biocompatibility and large surface area of nickel oxide nanomaterials with immersing the GC/NiOx-modified electrode into FAD solution for a short period of time, 10–140 s, a stable thin layer of the FAD molecules immobilized onto electrode surface. The FAD/NiOx films exhibited a pair of well-defined, stable, and nearly reversible CV peaks at wide pH range (2–10). The formal potential of adsorbed FAD onto nickel oxide nanoparticles film, E o′ vs. Ag/AgCl reference electrode is −0.44 V in pH 7 buffer solutions was similar to dissolved FAD and changed linearly with a slope of 58.6 mV/pH in the pH range 2–10. The surface coverage and heterogeneous electron transfer rate constant (k s ) of FAD immobilized on NiOx film glassy carbon electrode are 4.66 × 10−11 mol cm−2 and 63 ± 0.1 s−1, indicating the high loading ability of the nickel oxide nanoparticles and great facilitation of the electron transfer between FAD and nickel oxide nanoparticles. FAD/NiOx nanocomposite-modified GC electrode shows excellent electrocatalytic activity toward S2O82− reduction at reduced overpotential. Furthermore, rotated modified electrode illustrates good analytical performance for amperometric detection of S2O82−. Under optimized condition, the concentration calibration range, detection limit, and sensitivity were 3 μM–1.5 mM, 0.38 μM and 16.6 nA/μM, respectively.  相似文献   

3.
Differential capacitance curves are measured by mans of an ac-bridge in the system Ga/[N-MF + 0.1m M KCl + 0.1(1 − m) M KClO4] with the surface-active anion taken in the following molar fractions m: 0, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, and 1. As compared with the other solvents, N-methylformamide (N-MF) makes it possible to realize the highest positive charges of the Ga electrode at which the electrode remains ideally polarizable (up to 20 μC/cm2). The data on the specific adsorption of Cl ions in the mentioned system can be described qualitatively by the Frumkin isotherm in which the free energy is considered as a linear function of the electrode charge.  相似文献   

4.
The radical anion P4· was detected and identified by the ESR method as a spin-adduct with nitrone during the electrochemical reduction of white phosphorus in the presence of a spin trap, viz., α-phenyl-N-tert-butylnitrone, in a special electrolysis cell with a helical platinum working electrode in the potentiostatic mode. The character of the behavior of P4· and the spin trap during electrochemical reduction was monitored by cyclic voltammetry directly in the electrolysis cell, and the spin-adduct formed was detected by ESR.  相似文献   

5.
Polymerization of pyrrole and 2-aminobenzoic acid has been investigated, and a functionalized stable film of poly(pyrrole-2-aminobenzoic acid) (PP2ABA) has been obtained electrochemically onto platinum electrode. Different cyclic voltammetric behavior is obtained for polypyrrole and PP2ABA during electrosynthesis. Fourier-transformed infrared spectrometry and surface-enhanced Raman spectrometry measurements on the two films have confirmed the presence of carboxylate group in the films. The enzyme, glucose oxidase, was covalently immobilized on a conducting PP2ABA film, and amperometric response was measured as a function of concentration of glucose at a potential of 0.7 V vs Ag/AgCl in 0.1 M phosphate buffer at pH 6.2. The effect of polymeric film thickness, pH, and possible interferents were investigated. The linear range of the calibration curve is from 3 to 40 mM with a sensitivity of 0.058 μA mM−1 cm−2 and a limit of detection of 0.5 mM. The apperent Mishaelis–Menten constant K M is calculated to be 1 × 10−2 mM, and the response time is 5 s.  相似文献   

6.
Titanium oxide nanotube electrodes were successfully prepared by anodic oxidation on pure Ti sheets in 0.5 wt.% NH4F + 1 wt.% (NH4)2SO4 + 90 wt.% glycerol mixed solutions. Nanotubes with diameter 40–60 nm and length 7.4 μm were observed by field emission scanning electron microscope. The electrochemical and photoelectrochemical characteristics of TiO2 nanotube electrode were investigated using linear polarization and electrochemical impedance spectroscopy techniques. The open-circuit potential dropped markedly under irradiation and with the increase of Cl concentrations. A saturated photocurrent of approximately 1.3 mA cm−2 was observed under 10-W low-mercury lamp irradiation in 0.1 M NaCl solution, which was much higher than film electrode. Meanwhile, the highest photocurrent in NaCl solution implied that the photogenerated holes preferred to combine with Cl. Thus, a significant synergetic effect on active chlorine production was observed in photoelectrocatalytic processes. Furthermore, the generation efficiency for active chlorine was about two times that using TiO2/Ti film electrode by sol–gel method. Finally, the effects of initial pH and Cl concentration were also discussed.  相似文献   

7.
The oxidative and reductive electrochemistry of the three isomeric nitroanilines has been studied in neutral (0.1 mol L−1 KClO4) and acidic (0.1 mol L−1 HClO4) aqueous electrolyte solutions by cyclic voltammetry and surface enhanced Raman spectroscopy (SERS). The cyclic voltammograms recorded for o- and p-nitroanilines with a gold electrode in acidic solution, scanning toward negative potentials, revealed formation of phenylenediamine not observed in neutral solution. Similar behavior of nitroanilines and phenylenediamines was observed on gold and platinum electrodes. An oxygen–gold adsorbate stretching mode was detected between 400 and 430 cm−1 in the SER-spectra of the three isomeric nitroanilines in both electrolyte solutions at positive electrode potentials, implying perpendicular adsorption via the nitro group.  相似文献   

8.
Cyclic voltammetry, chronoamperometry, and rotating disk electrode voltammetry were used to investigate the electrochemical behavior of thiobencarb (TB) at carbon paste electrode modified with an azo dye, 2-(4-((4-ethoxyphenyl)diazenyl)phenylamino)ethanol (EDPE), EDPE/modified carbon paste electrode (MCPE). The modified electrode showed high electrocatalytic activity toward thiobencarb. The current was enhanced significantly relative to the situation prevailing when a bare glassy carbon electrode was used. The kinetics parameters of this process were calculated, the apparent electron transfer rate constant k s and α (charge transfer coefficient between electrode and EDPE) were 14.6 s−1 and 0.48, respectively. The experimental parameters were optimized, and the mechanism of the catalytic process was discussed. The best defined cathodic peak was obtained with 0.1 M acetate buffer (pH 3.0). The response of the sensor was very quick, and response time was approximately 5 s. The differential pulse voltammetry response of the MCPE was linear against the concentration of TB in the range of 0.96 to 106 μg L−1. The limit of detection was found to be 0.025 μg L−1. The precision was examined by carrying out eight replicate measurements at a concentration of 25 μg L−1 TB; the relative standard deviation was 2.9%.  相似文献   

9.
Cyclic and direct voltammetry with linear potential sweep has been used for the investigation of the dependence of the reversibility and reduction current in the system Fe(CN)63−/Fe(CN)64− on the concentrations of LiCl, NaCl, KCl, and CsCl solutions. The electrode was made of a graphite-epoxy composite and activated by mechanically cutting a surface layer directly in the solution and deactivated by the long-term storage in the air. The selected type of the graphite electrode and the method used to activate its surface provides the reversibility and diffusion control of the electrode process in the system Fe(CN)63−/Fe(CN)64− regardless of the composition of the supporting solution. In the case of the deactivated electrode, the degree of irreversibility of this process depends on the form and concentration of metal chloride in the supporting electrolyte and the diffusion transfer is complicated by the adsorption of compounds formed between the ferricyanide and the cation of the supporting solution.  相似文献   

10.
A method to fabricate poly(3,4-ethylene dioxythiophene)-poly(4-styrene sulfonate)-Meldola Blue (PEDOT-PSS-MDB)-modified electrodes had been disclosed. Firstly, the PEDOT-PSS-film-modified electrode was electrochemically prepared. Then, the PEDOT-PSS was treated as a matrix to immobilize electroactive mediator, Meldola Blue (MDB), by means of an electrostatic interaction to form the proposed film, PEDOT-PSS-MDB. Electrochemical properties of the proposed film exhibited surface confinement and pH dependence. The PEDOT-PSS-MDB electrode could electrocatalytically reduce hydrogen peroxide (H2O2) with a low overpotential and showed a linear response to H2O2 in the concentration range of 5 to 120 μM, detection limit of 0.1 μM, and sensitivity of 353.9 μA mM−1 cm−2 (S/N = 3). By comparison, the electrocatalytic activity of PEDOT-PSS-MDB electrode was found superior to that of PEDOT-PSS and MDB-PSS electrodes. It also has competitive potential as compared with other mediators, through the use of HRP to determine H2O2. Moreover, the potential interferents such as ascorbic acid, dopamine, uric acid, and glucose were also studied for H2O2 determination by the proposed film.  相似文献   

11.
One-step, diameter-selective dispersion of single-walled carbon nanotubes (SWCNTs) has been accomplished through noncovalent complexation of the nanotubes with a water-soluble, biocompatible polymer chitosan at room temperature. Such chitosan-wrapped individual SWCNTs can be used for the immobilization of horseradish peroxidase (HRP) and be used to construct an electrode for direct bioelectrochemical sensing without an electron mediator. The direct electron transfer between HRP and the electrode surface was observed with a formal potential of approximately −0.35 V (vs. saturated calomel electrode) in phosphate buffer solution and the calculated heterogeneous electron transfer rate constant is approximately 23.5 s−1. Experimental results indicate that the immobilized HRP retains its catalytic activity for the reduction of nitric oxide. Such an HRP–SWCNT–chitosan-based biosensor exhibited a rapid response time of less than 6 s and a good linear detection range for nitrite concentration, from 25 to 300 μM with a detection limit of 3 μM. The apparent Michaelis–Menten constant (K m) and the maximum electrode sensitivity (imax/K m) are found to be 7.0 mM and 0.16 μA mM−1, respectively. Both the unique electrical properties of SWCNTs and biocompatibility of chitosan enable the construction of an excellent biosensing platform for improved electrocatalysis of HRP, allowing, specifically, the detection of trace levels of nitric oxide.  相似文献   

12.
Functionalized polypyrrole films were prepared by incorporation of Fe(CN)6 3− as doping anion during the electropolymerization of pyrrole at a glassy carbon electrode from aqueous solution. The electrochemical behavior of the Fe(CN)6 3−/Fe(CN)6 4− redox couple in polypyrrole was studied by cyclic voltammetry. An obvious surface redox reaction was observed and dependence of this reaction on the solution pH was illustrated. The electrocatalytic ability of polypyrrole film with ferrocyanide incorporated was demonstrated by oxidation of ascorbic acid at the optimized pH of 4 in a glycine buffer. The catalytic effect for mediated oxidation of ascorbic acid was 300 mV and the bimolecular rate constant determined for surface coverage of 4.5 × 10−8 M cm−2 using rotating disk electrode voltammetry was 86 M−1 s−1. Furthermore, the catalytic oxidation current was linearly dependent on ascorbic acid concentration in the range 5 × 10−4–1.6 × 10−2 M with a correlation coefficient of 0.996. The plot of i p versus v 1/2 confirms the diffusion nature of the peak current i p. Received: 12 April 1999 / Accepted: 25 May 1999  相似文献   

13.
Platinum (Pt) nanoparticles were deposited at the surface of well-aligned multi-walled carbon nanotubes (MWNTs) by potential cycling between +0.50 and −0.70 V at a scanning rate of 50 mV · s−1 in 5 mM Na2PtCl6 solution containing 0.1 M NaCl. The electrocatalytic oxidation of methanol at the nanocomposites of Pt nanoparticles/nanotubes (Ptnano/MWNTs) has been investigated using 0.2 M H2SO4 as supporting electrolyte. The effects of various parameters, such as Pt loading, concentration of methanol, medium temperature as well as the stability of Ptnano/MWNTs electrode, have been studied. Compared to glassy carbon electrode, carbon nanotube electrode significantly enhances the catalytic efficiency of Pt nanoparticles for methanol oxidation. This improvement in performance is due not only to the high surface area and the fast electron transfer rate of nanotubes but also to the highly dispersed Pt nanoparticles as electrocatalysts at the tips and the sidewalls of nanotubes.  相似文献   

14.
One-step synthesis method was proposed to obtain the nanocomposites of platinum nanoclusters and multiwalled carbon nanotubes (PtNCs–MWNTs), which were used as a novel immobilization matrix for the enzyme to fabricate glucose biosensor. The fabrication process of the biosensor was characterized by cyclic voltammetry, electrochemical impedance spectroscopy, atomic force microscopy and scanning electron microscope. Due to the favorable characteristic of PtNCs–MWNTs nanocomposites, the biosensor exhibited good characteristics, such as wide linear range (3.0 μM–12.1 mM), low detection limit (1.0 μM), high sensitivity (12.8 μA mM−1), rapid response time (within 6 s). The apparent Michaelis–Menten constant ( Km\textapp K_m^{\text{app}} ) is 2.1 mM. The performance of the resulting biosensor is more prominent than that of most of the reported glucose biosensors. Furthermore, it was demonstrated that this biosensor can be used for the assay of glucose in human serum samples.  相似文献   

15.
A heterobimetallic cyano-bridged 1D coordination polymer of the composition [Ni(baepn)(μ-NC)Fe(CN)3(NO)(μ-CN)]n·3H2O has been synthesized by the reaction of nickel(II) nitrate hexahydrate, baepn (baepn = N, N′-bis(2-aminoethyl)-1,3-propanediamine), and sodium nitroprusside dihydrate in a methanol–water mixture. The complex was characterized by physicochemical and spectroscopic methods. The crystal structure was established by single-crystal X-ray diffraction analysis. It reveals cyano-bridged heterometallic chains consisting of alternating arrays of Ni(II) and Fe(II) atoms, both being embedded in distorted octahedral environments. Low-temperature susceptibility measurements show the presence of weak antiferromagnetic exchange interactions between paramagnetic Ni(II) centers (J = −0.46 cm−1) through long diamagnetic [Fe(CN)5(NO)]2− bridges. Spin state of the iron atom was established by 57Fe M?ssbauer spectroscopy.  相似文献   

16.
The potential application of ordered mesoporous carbon (OMC)-modified glassy carbon electrode (OMC/GCE) in electrochemistry as a novel electrode material was investigated. X-ray diffraction, transmission electron micrographs, and cyclic voltammetry were used to characterize the structure and electrochemical behaviors of this material. Compared to GC electrode, the peak currents of potassium ferricyanide (K3[Fe(CN)6]) increase and the peak potential separation (ΔE p) decreases at the OMC/GC electrode. These phenomena suggest that OMC-modified GC electrode possesses larger electrode area and faster electron transfer rate, as compared with bare GC electrode. Furthermore, riboflavin was detected using OMC/GC electrode in aqueous solutions. The results showed that, under an optimum condition (pH 7.0), the OMC/GC electrode exhibited excellent response performance to riboflavin in the concentration range of 4.0 × 10−7 to 1.0 × 10−6 M with a high sensitivity of 769 μA mM−1. The detection limit was down to around 2 × 10−8 M. With good stability and reproducibility, the present OMC/GC electrode was applied in the determination of vitamin B2 content in vitamin tablets, and satisfactory results were obtained.  相似文献   

17.
Mercury-mercury (II) sulphide electrode has been prepared and its electrochemical and thermodynamic behaviour has been studied in different media. The electrode is found to show Nernstian response to pS (− log [S2−]) over the range 5.19–10.38. In the pH range 7.96–11.98, at constant [S2−]v, its response is also Nernstian. The values of thermodynamic functions, viz., ΔG0. ΔH0, and ΔS0 for the electrode reaction: Hg(3)+S2− ⇌HgS(s)+2e, have been determined. Further, the standard free energy of formation (ΔG f 0 ) and solubility product constant (K vp ) of HgS in aqueous medium at 25±0.1°C have also been determined.  相似文献   

18.
The differential capacitance curves were measured with an ac bridge in the Ga/[N-MF + 0.1 m M KBr + 0.1 (1 − m) M KClO4] and Ga/[N-MF + 0.1 m M KI + 0.1 (1 − m) M KClO4] systems at the following fractions m of surface-active anions: 0, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, and 1. As compared with other solvents, N-methyl formamide (N-MF) enables one to realize the largest positive charges of Ga electrode, at which it remains ideally polarizable (up to 20 μ/cm2). The data on the specific adsorption of Br and I anions in the system can be quantitatively described by the Frumkin’s isotherm; to the first approximation, free energy of halide ion (Hal) adsorption DGadsHal - 1 \Delta G_{adsHal^{ - 1} } is a linear function of electrode charge. It is found that, in contrast to the Hg/N-MF interface, DGadsHal - 1 \Delta G_{adsHal^{ - 1} } at the Ga/N-MF interface varies in the reverse order: Brt— ∼ I < Cl. From the measured results, we can conclude that the energy of metal-Hal interaction increases in series: $\Delta G_{M - Cl^ - } > \Delta G_{M - Br^ - } > \Delta G_{M - I^ - } $\Delta G_{M - Cl^ - } > \Delta G_{M - Br^ - } > \Delta G_{M - I^ - } and the difference (DGGa - Hal1- - DGGa - Hal2- )(\Delta G_{Ga - Hal_1^ - } - \Delta G_{Ga - Hal_2^ - } ) is larger than the difference between the solvation energies of Hal- (DGS - Hal1- - DGS - Hal2- )Hal^ - (\Delta G_{S - Hal_1^ - } - \Delta G_{S - Hal_2^ - } ).  相似文献   

19.
The preparation and electrochemical characterization of a carbon nanotube paste electrode modified with 2,2′-[1,2-ethanediylbis (nitriloethylidyne)]-bis-hydroquinone, referred to as EBNBH, was investigated. The EBNBH carbon nanotube paste electrode (EBNBHCNPE) displayed one pair of reversible peaks at E pa = 0.18 V and E pc = 0.115 V vs Ag/AgCl. Half wave potential (E 1/2) and ΔE p were 0.148 and 0.065 V vs Ag/AgCl, respectively. The electrocatalytic oxidation of ascorbic acid (AA) has been studied on EBNBHCNPE, using cyclic voltammetry, differential pulse voltammetry and chronoamperometry techniques. It has been shown that the oxidation of AA occurs at a potential where oxidation is not observed at the unmodified carbon paste electrode. The heterogeneous rate constant for oxidation of AA at the EBNBHCNPE was also determined and found to be about 1.07 × 10−3 cm s−1. The diffusion coefficient of AA was also estimated as 5.66 × 10−6 cm2 s−1 for the experimental conditions, using chronoamperometry. Also, this modified electrode presented the property of electrocatalysing the oxidation of AA and uric acid (UA) at 0.18 and 0.35 V vs Ag/AgCl, respectively. The separations of anodic peak potentials of AA and UA reached 0.17 V. Using differential pulse voltammetry, the calibration curves for AA and UA were obtained over the range of 0.1–800 μM and 20–700 μM, respectively. With good selectivity and sensitivity, the present method provides a simple method for selective detection of AA and UA in biological samples.  相似文献   

20.
The present work reports the synthesis, characterization and performance of a new zinc(II) complex of [Zn(C3H7-bim)2Br2] (bim = benzimidazole) as electrocatalyst for trichloroacetic acid and bromate reduction. Its structure was characterized by X-ray crystallography, IR spectroscopy and elemental analysis. The zinc atom adopts a distorted tetrahedral geometry by coordinating to two bromine atoms and two nitrogen atoms from two 1-propyl-1H-benzo[d]imidazole ligands. The electrochemical behavior and electrocatalysis of the zinc complex bulk-modified carbon paste electrode (Zn-CPE) have been studied by cyclic voltammetry. The Zn-CPE shows good electrocatalytic activities toward the reduction of trichloroacetic acid and bromate. The detection limit and the sensitivity are 0.05 μM, 67.43 μA μM−1 for trichloroacetic acid detection, and 0.02 μM, 69.94 μA μM−1 for bromate detection, respectively. This modified electrode shows good reproducibility, high stability, low detection limit, technical simplicity and possibility of rapid preparation, which is important for practical applications.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号