首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The standard reduced bar complex B(A) of a differential graded algebra A inherits a natural commutative algebra structure if A is a commutative algebra. We address an extension of this construction in the context of E-infinity algebras. We prove that the bar complex of any E-infinity algebra can be equipped with the structure of an E-infinity algebra so that the bar construction defines a functor from E-infinity algebras to E-infinity algebras. We prove the homotopy uniqueness of such natural E-infinity structures on the bar construction.We apply our construction to cochain complexes of topological spaces, which are instances of E-infinity algebras. We prove that the n-th iterated bar complexes of the cochain algebra of a space X is equivalent to the cochain complex of the n-fold iterated loop space of X, under reasonable connectedness, completeness and finiteness assumptions on X.  相似文献   

2.
Let X be a k-fold homotopy coalgebra of order j with respect to the pair of adjoint functors Σk and Ωk. We show that, under some connectivity conditions on the map , Y inherits a k-fold homotopy coalgebra structure of the same order for which f is a morphism of homotopy coalgebras. In particular, this holds for skeleta of homotopy coalgebras under some mild assumptions. As a consequence, we complete results on [M. Arkowitz, M. Golasiński, Homotopy coalgebras and k-fold suspensions, Hiroshima Math. J. 27 (1997) 209-220] and [T. Ganea, Cogroups and suspensions, Invent. Math. 9 (1970) 185-197] by detecting k-fold suspensions among skeleta of k-fold homotopy coalgebras.  相似文献   

3.
In this paper we consider the theory of higher order homotopy coalgebras as a collection of spaces between co-H-spaces and suspensions, which dualizes Stasheff's theory of Ak-spaces when these are defined through Ak-structures. Moreover we extend two Berstein-Hilton theorems which deal with the primitive homotopy type of a suspension and the class of a suspension map, respectively.  相似文献   

4.
The classical Eckmann-Hilton argument shows that two monoid structures on a set, such that one is a homomorphism for the other, coincide and, moreover, the resulting monoid is commutative. This argument immediately gives a proof of the commutativity of the higher homotopy groups. A reformulation of this argument in the language of higher categories is: suppose we have a one object, one arrow 2-category, then its Hom-set is a commutative monoid. A similar argument due to A. Joyal and R. Street shows that a one object, one arrow tricategory is ‘the same’ as a braided monoidal category.In this paper we begin to investigate how one can extend this argument to arbitrary dimension. We provide a simple categorical scheme which allows us to formalise the Eckmann-Hilton type argument in terms of the calculation of left Kan extensions in an appropriate 2-category. Then we apply this scheme to the case of n-operads in the author's sense and classical symmetric operads. We demonstrate that there exists a functor of symmetrisation Symn from a certain subcategory of n-operads to the category of symmetric operads such that the category of one object, one arrow, … , one (n−1)-arrow algebras of A is isomorphic to the category of algebras of Symn(A). Under some mild conditions, we present an explicit formula for Symn(A) which involves taking the colimit over a remarkable categorical symmetric operad.We will consider some applications of the methods developed to the theory of n-fold loop spaces in the second paper of this series.  相似文献   

5.
It is well known that the forgetful functor from symmetric operads to nonsymmetric operads has a left adjoint Sym1 given by product with the symmetric group operad. It is also well known that this functor does not affect the category of algebras of the operad. From the point of view of the author's theory of higher operads, the nonsymmetric operads are 1-operads and Sym1 is the first term of the infinite series of left adjoint functors Symn, called symmetrisation functors, from n-operads to symmetric operads with the property that the category of one object, one arrow, …, one (n−1)-arrow algebras of an n-operad A is isomorphic to the category of algebras of Symn(A).In this paper we consider some geometrical and homotopical aspects of the symmetrisation of n-operads. We follow Getzler and Jones and consider their decomposition of the Fulton-Macpherson operad of compactified real configuration spaces. We construct an n-operadic counterpart of this compactification which we call the Getzler-Jones operad. We study the properties of Getzler-Jones operad and find that it is contractible and cofibrant in an appropriate model category. The symmetrisation of the Getzler-Jones operad turns out to be exactly the operad of Fulton and Macpherson. These results should be considered as an extension of Stasheff's theory of 1-fold loop spaces to n-fold loop spaces n?2. We also show that a space X with an action of a contractible n-operad has a natural structure of an algebra over an operad weakly equivalent to the little n-disks operad. A similar result holds for chain operads. These results generalise the classical Eckman-Hilton argument to arbitrary dimension.Finally, we apply the techniques to the Swiss-Cheese type operads introduced by Voronov and prove analogous results in this case.  相似文献   

6.
The existence of arbitrary cohomological localizations on the homotopy category of spaces has remained unproved since Bousfield settled the same problem for homology theories in the decade of 1970. This is related with another open question, namely whether or not every homotopy idempotent functor on spaces is an f-localization for some map f. We prove that both questions have an affirmative answer assuming the validity of a suitable large-cardinal axiom from set theory (Vopěnka's principle). We also show that it is impossible to prove that all homotopy idempotent functors are f-localizations using the ordinary ZFC axioms of set theory (Zermelo-Fraenkel axioms with the axiom of choice), since a counterexample can be displayed under the assumption that all cardinals are nonmeasurable, which is consistent with ZFC.  相似文献   

7.
The settings for homotopical algebra—categories such as simplicial groups, simplicial rings, AA spaces, EE ring spectra, etc.—are often equivalent to categories of algebras over some monad or triple T. In such cases, T is acting on a nice simplicial model category in such a way that T descends to a monad on the homotopy category and defines a category of homotopy T-algebras. In this setting there is a forgetful functor from the homotopy category of T-algebras to the category of homotopy T-algebras.  相似文献   

8.
With a view toward studying the homotopy type of spaces of Boolean formulae, we introduce a simplicial complex, called the theta complex, associated to any hypergraph, which is the Alexander dual of the more well-known independence complex. In particular, the set of satisfiable formulae in k-conjunctive normal form with ?n variables has the homotopy type of Θ(Cube(n,nk)), where Cube(n,nk) is a hypergraph associated to the (nk)-skeleton of an n-cube. We make partial progress in calculating the homotopy type of theta for these cubical hypergraphs, and we also give calculations and examples for other hypergraphs as well. Indeed studying the theta complex of hypergraphs is an interesting problem in its own right.  相似文献   

9.
D. Blanc  P.G. Goerss 《Topology》2004,43(4):857-892
A Π-algebra A is a graded group with all of the algebraic structure possessed by the homotopy groups of a pointed connected topological space. We study the moduli space R(A) of realizations of A, which is defined to be the disjoint union, indexed by weak equivalence classes of CW-complexes X with , of the classifying space of the monoid of self homotopy equivalences of X. Our approach amounts to a kind of homotopical deformation theory: we obtain a tower whose homotopy limit is R(A), in which the space at the bottom is BAut(A) and the successive fibres are determined by Π-algebra cohomology. (This cohomology is the analog for Π-algebras of the Hochschild cohomology of an associative ring or the André-Quillen cohomology of a commutative ring.) It seems clear that the deformation theory can be applied with little change to study other moduli problems in algebra and topology.  相似文献   

10.
We provide and study an equivariant theory of group (co)homology of a group G with coefficients in a Γ-equivariant G-module A, when a separate group Γ acts on G and A, generalizing the classical Eilenberg-MacLane (co)homology theory of groups. Relationship with equivariant cohomology of topological spaces is established and application to algebraic K-theory is given.  相似文献   

11.
Using the notion of truncating twisting function from a simplicial set to a cubical set a special, bitwisted, Cartesian product of these sets is defined. For the universal truncating twisting function, the (co)chain complex of the corresponding bitwisted Cartesian product agrees with the standard Cartier (Hochschild) chain complex of the simplicial (co)chains. The modelling polytopes Fn are constructed. An explicit diagonal on Fn is defined and a multiplicative model for the free loop fibration ΩYΛYY is obtained. As an application we establish an algebra isomorphism H(ΛY;Z)≈S(U)⊗Λ(s−1U) for the polynomial cohomology algebra H(Y;Z)=S(U).  相似文献   

12.
Crossed modules have longstanding uses in homotopy theory and the cohomology of groups. The corresponding notion in the setting of categorical groups, that is, categorical crosses modules, allowed the development of a low-dimensional categorical group cohomology. Now, its relevance is also shown here to homotopy types by associating, to any pointed CW-complex (X,∗), a categorical crossed module that algebraically represents the homotopy 3-type of X.  相似文献   

13.
Let X be a locally finite simplicial complex of dimension n, n? 5, equipped with a k-fold end structure [4] and consider a piecewise linear (n + 1)-dimensional manifold M that is proper homotopy equivalent to X × R by F:MX × R, where R is the set of real numbers. The question arises as to whether or not the manifold M can be split, i.e., written as M = N × R where N is a n-manifold and where there is a proper homotopy between F and (p1 ° F0) × id:N × RX × R, preserving the natural (k+1)-fold end structure, where F0 is F|N and p1 is the projection X × RX. Of particular significance is the fact that X is noncompact. When the construction of such splittings is attempted, algebraic obstructions arise, which vanish if and only if the construction can be completed. This paper develops such an obstruction theory by utilizing methods of L.C. Siebenmann and the k-fold end structures of F. Waldhausen.  相似文献   

14.
Let R+ be the space of nonnegative real numbers. F. Waldhausen defines a k-fold end structure on a space X as an ordered k-tuple of continuous maps xf:XR+, 1 ? j ? k, yielding a proper map x:X → (R+)k. The pairs (X,x) are made into the category Ek of spaces with k-fold end structure. Attachments and expansions in Ek are defined by induction on k, where elementary attachments and expansions in E0 have their usual meaning. The category Ek/Z consists of objects (X, i) where i: ZX is an inclusion in Ek with an attachment of i(Z) to X, and the category Ek6Z consists of pairs (X,i) of Ek/Z that admit retractions XZ. An infinite complex over Z is a sequence X = {X1 ? X2 ? … ? Xn …} of inclusions in Ek6Z. The abelian grou p S0(Z) is then defined as the set of equivalence classes of infinite complexes dominated by finite ones, where the equivalence relation is generated by homotopy equivalence and finite attachment; and the abelian group S1(Z) is defined as the set of equivalence classes of X1, where XEk/Z deformation retracts to Z. The group operations are gluing over Z. This paper presents the Waldhausen theory with some additions and in particular the proof of Waldhausen's proposition that there exists a natural exact sequence 0 → S1(Z × R)→πS0(Z) by utilizing methods of L.C. Siebenmann. Waldhausen developed this theory while seeking to prove the topological invariance of Whitehead torsion; however, the end structures also have application in studying the splitting of a noncompact manifold as a product with R[1].  相似文献   

15.
We propose a generalization of Sullivan’s de Rham homotopy theory to non-simply connected spaces. The formulation is such that the real homotopy type of a manifold should be the closed tensor dg-category of flat bundles on it much the same as the real homotopy type of a simply connected manifold is the de Rham algebra in original Sullivan’s theory. We prove the existence of a model category structure on the category of small closed tensor dg-categories and as a most simple case, confirm an equivalence between the homotopy category of spaces whose fundamental groups are finite and whose higher homotopy groups are finite dimensional rational vector spaces and the homotopy category of small closed tensor dg-categories satisfying certain conditions.  相似文献   

16.
17.
Let H be a definite quaternion algebra over Q with discriminant DH and R a maximal order of H. We denote by Gn a quaternionic unitary group and put Γn=Gn(Q)∩GL2n(R). Let Sκ(Γn) be the space of cusp forms of weight κ with respect to Γn on the quaternion half-space of degree n. We construct a lifting from primitive forms in Sk(SL2(Z)) to Sk+2n−2(Γn) and a lifting from primitive forms in Sk(Γ0(d)) to Sk+2(Γ2), where d is a factor of DH. These liftings are generalizations of the Maass lifting investigated by Krieg.  相似文献   

18.
The primary aim of this work is an intrinsic homotopy theory of strict ω-categories. We establish a model structure on ωCat, the category of strict ω-categories. The constructions leading to the model structure in question are expressed entirely within the scope of ωCat, building on a set of generating cofibrations and a class of weak equivalences as basic items. All objects are fibrant while free objects are cofibrant. We further exhibit model structures of this type on n-categories for arbitrary nN, as specializations of the ω-categorical one along right adjoints. In particular, known cases for n=1 and n=2 nicely fit into the scheme.  相似文献   

19.
Marcel Bökstedt 《Topology》2005,44(6):1181-1212
Let X be a 1-connected space with free-loop space ΛX. We introduce two spectral sequences converging towards H*(ΛX;Z/p) and H*((ΛX)hT;Z/p). The E2-terms are certain non-Abelian-derived functors applied to H*(X;Z/p). When H*(X;Z/p) is a polynomial algebra, the spectral sequences collapse for more or less trivial reasons. If X is a sphere it is a surprising fact that the spectral sequences collapse for p=2.  相似文献   

20.
We present a new approach to simple homotopy theory of polyhedra using finite topological spaces. We define the concept of collapse of a finite space and prove that this new notion corresponds exactly to the concept of a simplicial collapse. More precisely, we show that a collapse XY of finite spaces induces a simplicial collapse K(X)↘K(Y) of their associated simplicial complexes. Moreover, a simplicial collapse KL induces a collapse X(K)↘X(L) of the associated finite spaces. This establishes a one-to-one correspondence between simple homotopy types of finite simplicial complexes and simple equivalence classes of finite spaces. We also prove a similar result for maps: We give a complete characterization of the class of maps between finite spaces which induce simple homotopy equivalences between the associated polyhedra. This class describes all maps coming from simple homotopy equivalences at the level of complexes. The advantage of this theory is that the elementary move of finite spaces is much simpler than the elementary move of simplicial complexes: It consists of removing (or adding) just a single point of the space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号