首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The linear non-autonomous evolution equation u′(t) ? A(t) u(t) = ?(t), t ∈ [0, T], with the initial datum u(0) = x, in the space C([0, T], E), where E is a Banach space and {A(t)} is a family of infinitesimal generators of bounded analytic semigroups is considered; the domains D(A(t)) are supposed constant in t and possibly not dense in E. Maximal regularity of the strict and classical solutions, i.e., regularity of u′ and A(·)u(·) with values in the interpolation spaces DA(0)(θ, ∞) and DA(0)(θ) between D(A(0)) and E, is studied. A characterization of such spaces in a concrete case is also given.  相似文献   

2.
Let G = (V, E) be a simple graph of order n and i be an integer with i ≥ 1. The set X i ? V(G) is called an i-packing if each two distinct vertices in X i are more than i apart. A packing colouring of G is a partition X = {X 1, X 2, …, X k } of V(G) such that each colour class X i is an i-packing. The minimum order k of a packing colouring is called the packing chromatic number of G, denoted by χρ(G). In this paper we show, using a theoretical proof, that if q = 4t, for some integer t ≥ 3, then 9 ≤ χρ(C 4C q ). We will also show that if t is a multiple of four, then χρ(C 4C q ) = 9.  相似文献   

3.
In two-dimensional lattice spin systems in which the spins take values in a finite group G, one can define a field algebra F which carries an action of a Hopf algebra D(G), the double algebra of G and moreover, an action of D(G;H), which is a subalgebra of D(G) determined by a subgroup H of G, so that F becomes a modular algebra. The concrete construction of D(G;H)-invariant subspace A H in F is given. By constructing the quasi-basis of conditional expectation γ G of A H onto A G , the C*-index of γ G is exactly the index of H in G.  相似文献   

4.
Let G be a finite group and cd(G) be the set of all complex irreducible character degrees of G. Bertram Huppert conjectured that if H is a finite nonabelian simple group such that cd(G) = cd(H), then G???H × A, where A is an abelian group. In this paper, we verify the conjecture for the family of simple exceptional groups of Lie type 3 D 4(q), when q?≥?3.  相似文献   

5.
It is proved that, if G is a finite group that has the same set of element orders as the simple group D p (q), where p is prime, p ≥ 5 and q ∈ {2, 3, 5}, then the commutator group of G/F(G) is isomorphic to D p (q), the subgroup F(G) is equal to 1 for q = 5 and to O q (G) for q ∈ {2, 3}, F(G) ≤ G′, and |G/G′| ≤ 2.  相似文献   

6.
A t-spread set [1] is a set C of (t + 1) × (t + 1) matrices over GF(q) such that ∥C∥ = qt+1, 0 ? C, I?C, and det(X ? Y) ≠ 0 if X and Y are distinct elements of C. The amount of computation involved in constructing t-spread sets is considerable, and the following construction technique reduces somewhat this computation. Construction: Let G be a subgroup of GL(t + 1, q), (the non-singular (t + 1) × (t + 1) matrices over GF(q)), such that ∥G∥|at+1, and det (G ? H) ≠ 0 if G and H are distinct elements of G. Let A1, A2, …, An?GL(t + 1, q) such that det(Ai ? G) ≠ 0 for i = 1, …, n and all G?G, and det(Ai ? AjG) ≠ 0 for i > j and all G?G. Let C = &{0&} ∪ G ∪ A1G ∪ … ∪ AnG, and ∥C∥ = qt+1. Then C is a t-spread set. A t-spread set can be used to define a left V ? W system over V(t + 1, q) as follows: x + y is the vector sum; let e?V(t + 1, q), then xoy = yM(x) where M(x) is the unique element of C with x = eM(x). Theorem: LetCbe a t-spread set and F the associatedV ? Wsystem; the left nucleus = {y | CM(y) = C}, and the middle nucleus = }y | M(y)C = C}. Theorem: ForCconstructed as aboveG ? {M(x) | x?Nλ}. This construction technique has been applied to construct a V ? W system of order 25 with ∥Nλ∥ = 6, and ∥Nμ∥ = 4. This system coordinatizes a new projective plane.  相似文献   

7.
For a field k and two finite groups G and X, when G acts on X from the right by group automorphisms, there is a Hopf algebra structure on k-space (kX op )* ? kG (see Theorem 2.1), called a non-balanced quantum double and denoted by D X (G). In this paper, some Hopf algebra properties of D X (G) are given, the representation types of D X (G) viewed as a k-algebra are discussed, the algebra structure and module category over D X (G) are studied. Since the Hopf algebra structure of non-balanced quantum double D X (G) generalizes the usual quantum double D(G) for a finite group G, all results about D X (G) in this paper can also be used to describe D(G) as a special case and the universal R-matrix of D X (G) provides more solutions of Yang-Baxter equation.  相似文献   

8.
It is proved that, if G is a finite group that has the same set of element orders as the simple group D p (q), where p is prime, p ≥ 5 and q ∈ {2, 3, 5}, then the commutator group of G/F(G) is isomorphic to D p (q), the subgroup F(G) is equal to 1 for q = 5 and to O q (G) for q ∈ {2, 3}, F(G) ≤ G′, and |G/G′| ≤ 2.  相似文献   

9.
These are purely expository notes of Opdam’s analysis [O1] of the trace form τ(f) = f(e) on the Hecke algebra H = C c (I\G/I) of compactly supported functions f on a connected reductive split p-adic group G which are biinvariant under an Iwahori subgroup I, extending Macdonald’s work. We attempt to give details of the proofs, and choose notations which seem to us more standard. Many objects of harmonic analysis are met: principal series, Macdonald’s spherical forms, trace forms, Bernstein forms. The latter were introduced by Opdam under the name Eisenstein series for H. The idea of the proof is that the last two linear forms are proportional, and the proportionality constant is computed by projection to Macdonald’s spherical forms. Crucial use is made of Bernstein’s presentation of the Iwahori–Hecke algebra by means of generators and relations, as an extension of a finite dimensional algebra by a large commutative subalgebra. We give a complete proof of this using the universal unramified principal series right H-module M = C c (A(O)N\G/I) to develop a theory of intertwining operators algebraically.  相似文献   

10.
In this article, we prove a conjecture of Thompson for an infinite class of simple groups of Lie type E 7(q). More precisely, we show that every finite group G with the properties Z(G) = 1 and cs(G) = cs(E 7(q)) is necessarily isomorphic to E 7(q), where cs(G) and Z(G) are the set of lengths of conjugacy classes of G and the center of G respectively.  相似文献   

11.
Let G=(V,E) be a simple, undirected graph of order n and size m with vertex set V, edge set E, adjacency matrix A and vertex degrees Δ=d1d2≥?≥dn=δ. The average degree of the neighbor of vertex vi is . Let D be the diagonal matrix of degrees of G. Then L(G)=D(G)−A(G) is the Laplacian matrix of G and Q(G)=D(G)+A(G) the signless Laplacian matrix of G. Let μ1(G) denote the index of L(G) and q1(G) the index of Q(G). We survey upper bounds on μ1(G) and q1(G) given in terms of the di and mi, as well as the numbers of common neighbors of pairs of vertices. It is well known that μ1(G)≤q1(G). We show that many but not all upper bounds on μ1(G) are still valid for q1(G).  相似文献   

12.
A set S of vertices in a graph G is a total dominating set of G if every vertex of G is adjacent to some vertex in S. The minimum cardinality of a total dominating set of G is the total domination number γt(G) of G. The graph G is total domination edge critical if for every edge e in the complement of G, γt(G+e)<γt(G). We call such graphs γtEC. Properties of γtEC graphs are established.  相似文献   

13.
By a quasi-permutation matrix we mean a square matrix over the complex field C with non-negative integral trace. For a given finite group G, let c(G) denote the minimal degree of a faithful representation of G by complex quasi-permutation matrices and let r(G) denote the minimal degree of a faithful rational valued character of G. Also let G denote one of the symbols Al, Bl, Cl, Dl, E6, E7, E8, G2, F4, 2B2, 2E4, 2G2, and 3D4. Let G(q) denote simple group of type G over GF(q). Let c(q) = c(G(q)) and r(q) = r(G(q)). Then we will show that lim Limq = 1.  相似文献   

14.
A pebbling move on a connected graph G consists of removing two pebbles from some vertex and adding one pebble to an adjacent vertex. We define ft(G) as the smallest number such that whenever ft(G) pebbles are on G, we can move t pebbles to any specified, but arbitrary vertex. Graham conjectured that f1(G×H)≤f1(G)f1(H) for any connected G and H. We define the α-pebbling number α(G) and prove that α(Cpj×?×Cp2×Cp1×G)≤α(Cpj)?α(Cp2)α(Cp1)α(G) when none of the cycles is C5, and G satisfies one more criterion. We also apply this result with G=C5×C5 by showing that C5×C5 satisfies Chung’s two-pebbling property, and establishing bounds for ft(C5×C5).  相似文献   

15.
Let G(q) denote the multiplicative group of invertible elements in Zq, the ring of integers modulo q. Let H be a subgroup of G(q), and let aH be a coset of H in G(q). Suppose ?:ZqC is a function with support contained in aH. This paper describes how to find sets K ? Zq with |K|=|H| such that the function ? can be recovered from the values of its (finite) Fourier transform restricted to K. The proofs involve analyzing the (finite) Fourier transform by means of its associated matrix.  相似文献   

16.
17.
Let G be a group, S a subgroup of G, and F a field of characteristic p. We denote the augmentation ideal of the group algebra FG by ω(G). The Zassenhaus-Jennings-Lazard series of G is defined by Dn(G)=G∩(1+ωn(G)). We give a constructive proof of a theorem of Quillen stating that the graded algebra associated with FG is isomorphic as an algebra to the enveloping algebra of the restricted Lie algebra associated with the Dn(G). We then extend a theorem of Jennings that provides a basis for the quotient ωn(G)/ωn+1(G) in terms of a basis of the restricted Lie algebra associated with the Dn(G). We shall use these theorems to prove the main results of this paper. For G a finite p-group and n a positive integer, we prove that G∩(1+ω(G)ωn(S))=Dn+1(S) and G∩(1+ω2(G)ωn(S))=Dn+2(S)Dn+1(SD2(G)). The analogous results for integral group rings of free groups have been previously obtained by Gruenberg, Hurley, and Sehgal.  相似文献   

18.
Given a graph G with characteristic polynomial ϕ(t), we consider the ML-decomposition ϕ(t) = q 1(t)q 2(t)2 ... q m (t)m, where each q i (t) is an integral polynomial and the roots of ϕ(t) with multiplicity j are exactly the roots of q j (t). We give an algorithm to construct the polynomials q i (t) and describe some relations of their coefficients with other combinatorial invariants of G. In particular, we get new bounds for the energy E(G) = |λi| of G, where λ1, λ2, ..., λn are the eigenvalues of G (with multiplicity). Most of the results are proved for the more general situation of a Hermitian matrix whose characteristic polynomial has integral coefficients. This work was done during a visit of the second named author to UNAM.  相似文献   

19.
For given matrices A(s) and B(s) whose entries are polynomials in s, the validity of the following implication is investigated: ?ylimt → ∞A(D) y(t) = 0 ? limt → ∞B(D) y(t) = 0. Here D denotes the differentiation operator and y stands for a sufficiently smooth vector valued function. Necessary and sufficient conditions on A(s) and B(s) for this implication to be true are given. A similar result is obtained in connection with an implication of the form ?yA(D) y(t) = 0, limt → ∞B(D) y(t) = 0, C(D) y(t) is bounded ? limt → ∞E(D) y(t) = 0.  相似文献   

20.
Let X be a compact complex manifold. Consider a small deformation π: XB of X, the dimensions of the cohomology groups of tangent sheaf Hq(Xt, TXt) may vary under this deformation. This article studies such phenomena by studying the obstructions to deform a class in Hq(X, TX) with parameter t and gets a formula for the obstructions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号