首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Multiwalled carbon nanotubes (MWCNTs) and Vulcan carbon (VC) decorated with SnO2 nanoparticles were synthesized using a facile and versatile sonochemical procedure. The as-prepared nanocomposites were characterized by means of transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and Fourier transform infra red spectroscopy. It was evidenced that SnO2 nanoparticles were uniformly distributed on both carbon surfaces, tightly decorating the MWCNTs and VC. The electrochemical performance of the nanocomposites was evaluated by cyclic voltammetry and galvanostatic charge/discharge cycling. The as-synthesized SnO2/MWCNTs nanocomposites show a higher capacity than the SnO2/VC nanocomposites. Concretely, the SnO2/MWCNTs electrodes exhibit a specific capacitance of 133.33 F g−1, whereas SnO2/VC electrodes exhibit a specific capacitance of 112.14 F g−1 measured at 0.5 mA cm−2 in 1 M Na2SO4.  相似文献   

2.
《Solid State Ionics》2006,177(17-18):1501-1507
High-quality crystalline MSn2 (M = Cr and Co) thin films have been successfully fabricated by reactive pulsed laser deposition. The physical and electrochemical properties of the as-deposited thin films have been investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), galvanostatic cycling and cyclic voltammetry (CV). XRD measurement indicates that the as-deposited thin films prepared at 400 °C consisted mainly of MSn2 (M = Cr and Co) with a small quantity of metal tin. The specific reversible capacities of CrSn2 and CoSn2 thin film electrodes are found to be 467 mA h/g and 465 mA h/g, respectively. A mechanism involving an irreversible decomposition of MSn2 (M = Cr and Co) and a classical alloying process of Sn is proposed. MSn2 (M = Cr and Co) as the starting anode materials for conversion to the Li–Sn alloy can improve its electrochemical performance with high reversible capacity and good stable cycle.  相似文献   

3.
Tin monosulfide, SnS particles were synthesized at 950 °C using a simple melt mixing. The as prepared materials were subjected to XRD, SEM and EDAX analyses. The CR 2032-type coin cell composed of Li/SnS was assembled and its cycling profile was examined. The cell delivered an initial discharge capacity of 956 mAh/g at its first cycle and fades subsequently in the following cycles. The formation of Li2CO3 in the solid electrolyte interface (SEI) was identified by FT-IR analysis. Impedance spectroscopic study on Li/SnS cells revealed an increase in the value of charge transfer resistance “Rct” upon cycling and is attributed to the breaking of inter-particle contact caused by the volume expansion.  相似文献   

4.
Pure and lanthanum (La) doped ZnO nanorods were synthesized via co-precipitation method. The structure and morphology of as grown ZnO and La-ZnO nanoparticles were studied using transmission electron microscopy (TEM) and powder X-ray diffraction (XRD) methods. The values of remnant polarization and coercive field were found to be 0.027 μC/cm2 and 1.33 kV/cm, respectively, for as grown La-ZnO nanostructures. High Curie temperature (276 °C) for doped ZnO was observed in dielectric study. Piezoelectric coefficient at room temperature was found to be 101.30 pm/V. I-V characteristics were studied for both pure and doped ZnO nanoparticles. Photo-anodes of dye-sensitized solar cells (DSSCs) were made using ZnO and La-ZnO nanorods. The conversion efficiency and short circuit current density of La-ZnO nanorods based DSSC were 0.36% and 1.31 mA/cm2, respectively, which were found to be largely enhanced when compared with that of pure ZnO based DSSC (0.20% and 0.94 mA/cm2).  相似文献   

5.
Tin oxide (SnO2) nanoparticles were fabricated by evaporation of Sn powers at 1000 °C in air pressure. The as-deposited SnO2 particles were single crystal structure, which were mostly spherical shape, the diameter of particles was ranging from 200 to 600 nm. The photoluminescence (PL) spectrum showed that a sharp emission peak at around 393 nm with the excitation wavelength at 325 nm, which suggested possible applications in nanoscaled optoelectronic devices. It was also found that the holding time affects the morphology of the products. The formation mechanism of SnO2 particles was discussed.  相似文献   

6.
《Solid State Ionics》2006,177(9-10):851-855
The Li4Ti5O12/Ag composites were prepared by thermal decomposition of AgNO3 added to Li4Ti5O12 powders. The influence of the Ag contents and the mixing media on the particle size, morphology and electrochemical performance of Li4Ti5O12/Ag composites were investigated. The highest discharge capacity of the Li4Ti5O12/Ag composite reached at the 5 wt.% of Ag content. Compared with alcohol medium, distilled water as mixing medium presented the Li4Ti5O12/Ag composite with higher specific capacity and better cycling performance, leading to a reversible capacity after 50 cycles of 184.2 mAh/g with a capacity degradation of 3.31% compared to the second cycle at 2 C rate.  相似文献   

7.
Layered LiNi0.5Mn0.5 ? xAlxO2 (x = 0, 0.02, 0.05, 0.08, and 0.1) series cathode materials for lithium-ion batteries were synthesized by a combination technique of co-precipitation and solid-state reaction, and the structural, morphological, and electrochemical properties were examined by XRD, FT-IR, XPS, SEM, CV, EIS, and charge–discharge tests. It is proven that the aliovalent substitution of Al for Mn promoted the formation of LiNi0.5Mn0.5 ? xAlxO2 structures and induced an increase in the average oxidation number of Ni, thereby leading to the shrinkage of the lattice volume. Among the LiNi0.5Mn0.5 ? xAlxO2 materials, the material with x = 0.05 shows the best cyclability and rate ability, with discharge capacities of 219, 169, 155, and 129 mAh g? 1 at 10, 100, 200, and 400 mA g? 1 current density respectively. Cycled under 40 mA g? 1 in 2.8–4.6 V, LiNi0. 5Mn0.45Al0.05O2 shows the highest discharge capacity of about 199 mAh g? 1 for the first cycle, and 179 mAh g? 1 after 40 cycles, with a capacity retention of 90%. EIS analyses of the electrode materials at pristine state and state after first charge to 4.6 V indicate that the observed higher current rate capability of LiNi0. 5Mn0.45Al0.05O2 can be understood due to the better charge transfer kinetics.  相似文献   

8.
Hydrothermally processed highly photosensitive ZnO nanorods based plasmon field effect transistors (PFETs) have been demonstrated utilizing the surface plasmon resonance coupling of Au and Pt nanoparticles at Au/Pt and ZnO interface. A significantly enhanced photocurrent was observed due to the plasmonic effect of the metal nanoparticles (NPs). The Pt coated PFETs showed Ion/Ioff ratio more than 3 × 104 under the dark condition, with field-effect mobility of 26 cm2 V−1 s−1 and threshold voltage of −2.7 V. Moreover, under the illumination of UV light (λ = 350 nm) the PFET revealed photocurrent gain of 105 under off-state (−5 V) of operation. Additionally, the electrical performance of PFETs was investigated in detail on the basis of charge transfer at metal/ZnO interface. The ZnO nanorods growth temperature was preserved at 110 °C which allowed a low temperature, economical and simple method to develop highly photosensitive ZnO nanorods network based PFETs for large scale production.  相似文献   

9.
Nanocrystalline tin oxide (SnO2) powders were synthesized through wet chemical route using tin metal as precursor. The morphology and optical properties, as well as the effect of sintering on the structural attributes of SnO2 particles were analyzed using Transmission electron microscopy (TEM), UV–visible spectrophotometry (UV–vis) and X-ray diffraction (XRD), respectively. The data revealed that the lattice strain plays a significant role in determining the structural properties of sintered nanoparticles. The particle size was found to be 5.8 nm, 19.1 nm and 21.7 nm for samples sintered at 300 °C, 500 °C, and 700 °C, respectively. Also, the band gaps were substantially reduced from 4.1 eV to 3.8 eV with increasing sintering temperatures. The results elucidated that the structural and optical properties of the SnO2 nanoparticles can be easily modulated by altering sintering temperature during de novo synthesis.  相似文献   

10.
A lithiated layered Mn–Cr compound, Li[Cr0.29Li0.24Mn0.47]O2 was synthesized by a solution method with subsequent quenching. The crystal structure was investigated by X-ray diffraction (Rietveld refinement) and Electron diffraction showing co-existence of rhombohedral and monoclinic structures. According to the co-indexed electron diffraction patterns and HRTEM images, Li[Cr0.29Li0.24Mn0.47]O2 electrode was composed of nano-scale domains indexed in monoclinic and hexagonal structures, simultaneously. The nano-composite cathode successfully prevents spinel-like structural transformation during cycling and delivered a good reversible capacity of about 195 mAh/g between 2.4 and 4.7 V.  相似文献   

11.
The transition metal-doped spinel cathode materials, LiM0.5Mn1.5O4 (M=Ni. Co, Cr) were prepared by solid-state reaction. The structure and morphology of the samples were investigated by X-ray diffraction, Rietveld refinement and scanning electron microscopy (SEM). The diffraction peaks of all the samples corresponded to a single phase of cubic spinel structure with a space group Fd3m. Field-emission SEM shows octahedron like shapes and the primary particles size was between 500 nm and 2 μm. Oxidation states of Ni, Co and Cr were found to be 2+, 2+ and 3+ as revealed by X-ray photoelectron spectroscopy. During discharging, LiNi0.5Mn1.5O4 and LiCo0.5Mn1.5O4 sample shows more than 130 mAh/g between 3.5 and 5.2 V at a current density of 0.65 mA/cm2 and well developed plateau around 5 V, respectively.  相似文献   

12.
Hierarchical structured Co-doped SnO2 nanoparticles are prepared by a low temperature hydrothermal process. The structural and surface morphologies of the SnO2 and Sn1?xCoxO2 nanoparticles are studied by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The Sn1?xCoxO2 nanoparticles form with a tetragonal rutile structure during the hydrothermal process without further calcination. The pseudocapacitance behavior of the Sn1?xCoxO2 nanoparticles is characterized by cyclic voltammetry (CV) in 1.0 M H2SO4 electrolyte. The specific capacitance (SC) is found to increase with an increase in cobalt content. A maximum SC of 840 F g?1 is obtained for a Sn0.96Co0.04O2 composite at a 10 mV s?1 scan rate.  相似文献   

13.
Rutile phase of SnO2 quantum dots of average size of 2.5 nm were synthesized at a growth temperature of 70 °C and characterized with XRD, TEM, FTIR and Raman analysis. The effective strain within the lattice of SnO2 quantum dots was calculated by Williamson–Hall method. The broad peaks in XRD as well as Raman spectra and the presence of Raman bands at 569 and 432 cm−1 are due to lower crystallinity of nanoparticles. The optical band gap of SnO2 quantum dots was increased to 3.75 eV attributed to the quantum size effect. SnO2 quantum dots were annealed in air atmosphere and the crystallite size of the particles increased with annealing temperature. Sunlight assisted photodegration property of SnO2 quantum dots was investigated with vanillin as a model system and it shows the photodegradation efficiency of 87%. The photoluminescence and photodegradation efficiency of nanocrystallite SnO2 decreases with increase of crystallite size contributed to the reduction in population of defects and surface area.  相似文献   

14.
Present paper reports the synthesis of SnO2–TiO2 nanocomposite, its characterization and performance as opto-electronic humidity sensor. Nanocrystalline SnO2–TiO2 film was deposited on the base of an equilateral prism using a photo resist spinner and the as prepared film was annealed at 200 °C for 2 h. The crystal structure of the prepared film was investigated using X-ray diffraction (XRD). Minimum crystallite size of the material was found 7 nm. Surface morphology of the film was investigated by Scanning electron microscope (SEM LEO-0430, Cambridge). SEM image shows that the film is porous. Differential scanning calorimetry (DSC) of as synthesized material shows two exothermic peaks at about 40 and 110 °C, respectively which are due to the evaporation of chemical impurities and water. Further the prepared film was investigated through the exposure of humidity and relative humidity (%RH) was measured directly in terms of modulation in the intensity of light recorded on a digital power meter. The maximum sensitivity of sensor was found 4.14 μW/%RH, which is quite significant for sensor fabrication purposes.  相似文献   

15.
We report a systematic study of the layered lithium nitridocuprates Li3 ? xCuxN with 0.1  x  0.39. The structural data obtained from experimental XRD patterns, Rietveld refinements and unit cell parameters calculation vs x, indicate that copper (I) substitute interlayer lithium ions in the parent nitride Li3N to form the Li3 ? xCuxN compound without any Li vacancy in the Li2N? layer. Electrochemical results report Li insertion into the corresponding layered structures cannot take place in the 1.2/0.02 V voltage range as in the case of lithium into nitridonickelates and nitridocobaltates. However, in the initial charge process of Li3 ? xCuxN at 1.4 V leading to a specific capacity higher than 1000 mA h/g, the oxidation of copper and nitride ions is probably involved inducing a strong structural disordering process. As a consequence a new rechargeable electrochemical system characterized by discharge–charge potential of ≈ 0.3 V/1.2 V appears from the second cycle. Cycling experiments 0.02 V voltage/0.02 V range induce a complete destruction of the layered host lattice and the presence of Cu3N in the charge state suggests a conversion reaction. The capacity recovered in the 1.4/0.02 V range practically stabilizes around 500 mA h/g after 20 cycles.  相似文献   

16.
《Current Applied Physics》2010,10(2):636-641
In this paper, a very simple procedure was presented for the reproducible synthesis of large-area SnO2 nanowires (NWs) on a silicon substrate by evaporating Sn powders at temperatures of 700, 750, and 800 °C. As-obtained SnO2 NWs were characterized by field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Raman spectroscopy. They revealed that the morphology of the NWs is affected by growth temperature and the SnO2 NWs are single-crystalline tetragonal. The band gap of the NWs is in the range of 4.2–4.3 eV as determined from UV/visible absorption. The NWs show stable photoluminescence with an emission peak centered at around 620 nm at room-temperature. The sensors fabricated from the SnO2 NWs synthesized at 700 °C exhibited good response to LPG (liquefied petroleum gas) at an operating temperature of 400 °C.  相似文献   

17.
A new approach of chemical bath deposition (CBD) of SnO2 thin films is reported. Films with a 0.2 μm thickness are obtained using the multi-dip deposition approach with a deposition time as little as 8–10 min for each dip. The possibility of fabricating a transparent conducting oxide layer of Cd2SnO4 thin films using CBD is investigated through successive layer deposition of CBD-SnO2 and CBD-CdO films, followed by annealing at different temperatures. High quality films with transmittance exceeding 80% in the visible region are obtained. Annealed CBD-SnO2 films are orthorhombic, highly stoichiometric, strongly adhesive, and transparent with an optical band gap of ~4.42 eV. Cd2SnO4 films with a band gap as high as 3.08 eV; a carrier density as high as 1.7 × 1020 cm?3; and a resistivity as low as 1.01 × 10?2 Ω cm are achieved.  相似文献   

18.
《Solid State Ionics》2006,177(3-4):305-309
Novel inorganic network polymer phosphazene disulfide [(NPS2)3]n was synthesized by a solution cross-link method. IR and element content analysis confirmed the polymer's molecular structure. The polymer has an average particle size of d0.5 = 7.7 μm and the specific surface area is 57.4 m2 g 1. TG/DTA analysis showed that [(NPS2)3]n underwent a decomposition reaction from 200 to 300 °C. When used as cathode material in lithium batteries, its initial discharge capacity was 459.1 mAh g 1, which is almost 93.5% of theoretical specific capacity (490.9 mAh g 1). After 30 charge–discharge cycles, the discharge capacity of [(NPS2)3]n stabilized at approximately 400.1 mAh g 1 which revealed an excellent cyclic ability. Therefore [(NPS2)3]n is of great potential as cathode material for secondary lithium batteries.  相似文献   

19.
The results on the electronic structure of the unoccupied electronic states of the polycrystalline SnO2 in the energy range from 5 eV to 25 eV above the Fermi level are presented. The modification of the electronic structure and of the surface potential upon deposition of the ultrathin films of copper phthalocyanine (CuPc) and of perylene tetracarboxylic acid dianhydride (PTCDA) film onto the SnO2 surface were studied using the very low energy electron diffraction (VLEED) method and the total current spectroscopy (TCS) measurement scheme. A substantial attenuation of the TCS signal coming from the SnO2 surface was observed upon formation of a 1.5–2 nm thick organic deposit layer while no new spectral features from the deposit were distinguishable. It was observed that the electronic structure typical for the organic films was formed within the organic deposit thickness range from 2 nm to 7 nm. The interfacial charge transfer was characterized by the formation of the polarization layer up to 5 nm thick in the organic films. The PTCDA deposition on SnO2 was accompanied by the negative charge transfer onto the organic layer and to the 0.65 eV increase the surface work function. At the CuPc/SnO2 interface, the negative charge was transferred to the SnO2 surface and the overall surface work function decreased by 0.15 eV.  相似文献   

20.
In this paper, we reported a method to prepare monodisperse magnetite nanoparticles at mild temperature using cheap and non-toxic precursors. It overcomes the shortages of chemical co-precipitation method and thermal decomposition method and combines the advantages of facile, cheap, large-scale, monodisperse, nanosize, and low synthesis temperature and low toxic. In this method, FeCl3 · 6H2O, FeCl2 · 4H2O and sodium oleate were mixed in toluene/ethanol/water mixture solvent and refluxed at 74 °C to prepare magnetite nanoparticles directly. The nanoparticles were characterized by transmission electron microscopy, dynamic light scattering, X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared spectrometer and thermogravimetric analysis. The magnetic properties of nanoparticles were measured by superconducting quantum interference device. The results showed that the nanoparticles are well-monodisperse with about 4–5 nm of average diameter. The nanoparticles were proved to be superparamagnetic with saturated magnetization 23.6 emu/g and blocking temperature 24.4 K. A possible formation mechanism of monodisperse magnetite nanoparticles was presented at the same time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号