首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we show the large time asymptotic nonlinear stability of a superposition of viscous shock waves with viscous contact waves for systems of viscous conservation laws with small initial perturbations, provided that the strengths of these viscous waves are small with the same order. The results are obtained by elementary weighted energy estimates based on the underlying wave structure and a new estimate on the heat equation.  相似文献   

2.
We study the asymptotic stability of planar waves for the Allen–Cahn equation on ? n , where n ≥ 2. Our first result states that planar waves are asymptotically stable under any—possibly large—initial perturbations that decay at space infinity. Our second result states that the planar waves are asymptotically stable under almost periodic perturbations. More precisely, the perturbed solution converges to a planar wave as t → ∞. The convergence is uniform in ? n . Lastly, the existence of a solution that oscillates permanently between two planar waves is shown, which implies that planar waves are not asymptotically stable under more general perturbations.  相似文献   

3.
This paper is devoted to the study of the nonlinear stability of the composite wave consisting of a rarefaction wave and a viscous contact discontinuity wave of the non‐isentropic Navier–Stokes–Poisson system with free boundary. We first construct the composite wave through the quasineutral Euler equations and then prove that the composite wave is time asymptotically stable under small perturbations for the corresponding initial‐boundary value problem of the non‐isentropic Navier–Stokes–Poisson system. Only the strength of the viscous contact wave is required to be small. However, the strength of the rarefaction wave can be arbitrarily large. In our analysis, the domain decomposition plays an important role in obtaining the zero‐order energy estimates. By introducing this technique, we successfully overcome the difficulty caused by the critical terms involved with the linear term, which does not satisfy the quasineural assumption for the composite wave. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
The shock wave in a viscous gas which is treated as a strong discontinuity is unstable against small perturbations [A.M. Blokhin, On stability of shock waves in a compressible viscous gas, Matematiche LVII (I) (2002) 3-19]. We suggest such additional boundary conditions that a modified (with account to these conditions) linear initial-boundary value problem on stability of the shock wave does not admit Hadamard-type ill-posedness examples.  相似文献   

5.
This study is concerned with the large time behavior of the two-dimensional compressible Navier-Stokes-Korteweg equations, which are used to model compressible fluids with internal capillarity. Based on the fact that the rarefaction wave, one of the basic wave patterns to the hyperbolic conservation laws is nonlinearly stable to the one-dimensional compressible Navier-Stokes-Korteweg equations, the planar rarefaction wave to the two-dimensional compressible Navier-Stokes-Korteweg equations is first derived. Then, it is shown that the planar rarefaction wave is asymptotically stable in the case that the initial data are suitably small perturbations of the planar rarefaction wave. The proof is based on the delicate energy method. This is the first stability result of the planar rarefaction wave to the multi-dimensional viscous fluids with internal capillarity.  相似文献   

6.
In this paper, we study the asymptotic stability of a composite wave consisting of two traveling waves to a hyperbolic–parabolic system modeling repulsive chemotaxis. On the basis of elementary energy estimates, we show that the composite wave is asymptotically stable under general initial perturbations, which are not necessarily zero integral. As an application, we obtain a similar result for this system in the presence of a boundary. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
本文讨论单个粘性守恒律方程与具有粘性的p方程组的Cauchy问题.根据初始资料的不同情形,其相应的Riemann问题以疏散波,激波或它们的迭加为弱解.本文的目的是指出Cauchy问题的解将分别趋于疏散波,激波或它们的迭加.本文基本方法是能量积分法.文中综述了现有的成果,也提出了一些未解决的问题.  相似文献   

8.
In this paper, we study the large time behavior of solutions to the nonisentropic Navier-Stokes equations of general gas, where polytropic gas is included as a special case, with a free boundary. First we construct a viscous contact wave which approximates to the contact discontinuity, which is a basic wave pattern of compressible Euler equation, in finite time as the heat conductivity tends to zero. Then we prove the viscous contact wave is asymptotic stable if the initial perturbations and the strength of the contact wave are small. This generalizes our previous result [6] which is only for polytropic gas.  相似文献   

9.
In this paper, we study the asymptotic stability of rarefaction waves for the compressible isentropic Navier–Stokes equations with density-dependent viscosity. First, a weak solution around a rarefaction wave to the Cauchy problem is constructed by approximating the system and regularizing the initial values which may contain vacuum states. Then some global in time estimates on the weak solution are obtained. Based on these uniform estimates, the vacuum states are shown to vanish in finite time and the weak solution we constructed becomes a unique strong one. Consequently, the stability of the rarefaction wave is proved in a weak sense. The theory holds for large-amplitudes rarefaction waves and arbitrary initial perturbations.  相似文献   

10.
The beforehand unclear relation between the viscous-inviscid interaction and the instability of viscous gas flows is illustrated using three-dimensional boundary-layer perturbations in the case of sub- and supersonic outer flows. The assumptions are considered under which asymptotic boundary layer equations with self-induced pressure are derived and the excitation mechanisms of eigenmodes (i.e., Tollmien-Schlichting waves) are described. The resulting dispersion relations are analyzed. The boundary layer in a supersonic flow is found to be stable with respect to two-dimensional perturbations, whereas, in the three-dimensional case, the modes become unstable. The increment of growth is investigated as a function of the Mach number and the orientation of the front of a three-dimensional Tollmien-Schlichting wave.  相似文献   

11.
This paper is concerned with the large time behavior of the solutions for 1D radiation hydrodynamic limit model without viscosity and its asymptotic stability of the viscous contact discontinuity wave under the smallness assumption of the strength of the contact wave and initial perturbations. The present pressure includes a fourth-order term about the absolute temperature from radiation effect which brings the main difficulty. Furthermore, the dissipative of the system is weaker for the lack of viscosity. All these make the problem more challenging. The prove is mainly based on the energy method, including normal and radial directions energy estimates.  相似文献   

12.
This article deals with the envelope solitary waves and periodic waves in the AB equations that serve as model equations describing marginally unstable baroclinic wave packets in geophysical fluids and also ultra‐short pulses in nonlinear optics. An envelope solitary wave has a width proportional to its velocity and inversely proportional to its amplitude. The velocity of the envelope solitary wave is partially dependent on its amplitude in the sense that the amplitude determines the upper or lower limit of the velocity. When two envelope solitary waves collide, they survive the collision and retain their identities except for a shift in the positions of both the envelopes and the carrier waves. The periodic wave solutions in sine wave form may be stable or unstable depending upon the wave parameters. When the sine wave is destabilized by small perturbations, its long‐time evolution shows a Fermi–Pasta–Ulam‐type oscillation.  相似文献   

13.
In this paper, we consider the problem with a gas–gas free boundary for the one dimensional isentropic compressible Navier–Stokes–Korteweg system. For shock wave, asymptotic profile of the problem is shown to be a shifted viscous shock profile, which is suitably away from the boundary, and prove that if the initial data around the shifted viscous shock profile and its strength are sufficiently small, then the problem has a unique global strong solution, which tends to the shifted viscous shock profile as time goes to infinity. Also, we show the asymptotic stability toward rarefaction wave without the smallness on the strength if the initial data around the rarefaction wave are sufficiently small.  相似文献   

14.
The Kadomtsev–Petviashvili (KP) equation possesses a four‐parameter family of one‐dimensional periodic traveling waves. We study the spectral stability of the waves with small amplitude with respect to two‐dimensional perturbations which are either periodic in the direction of propagation, with the same period as the one‐dimensional traveling wave, or nonperiodic (localized or bounded). We focus on the so‐called KP‐I equation (positive dispersion case), for which we show that these periodic waves are unstable with respect to both types of perturbations. Finally, we briefly discuss the KP‐II equation, for which we show that these periodic waves are spectrally stable with respect to perturbations that are periodic in the direction of propagation, and have long wavelengths in the transverse direction.  相似文献   

15.
An analytic and numerical study of the behavior of the linear nonhomogeneous wave equation of the form ε2utt = Δu + tf with high wave speed (ε 1) is carried out. This study was initially motivated by meteorological observations which have indicated the presence of large spatial scale gravity waves in the neighborhood of a number of summer and winter storms, mainly from visible images of ripples in clouds in satellite photos. There is a question as to whether the presence of these waves is caused by the nearby storms. Since the linear wave equation is an approximation to the full system describing pressure waves in the atmosphere, yet is considerably more tractable, we have chosen to analyze the behavior of the linear nonhomogeneous wave equation with high wave speed. The analysis is shown to be valid in one, two, and three space dimensions. Partly because of the high wave speed, the solution is known to consist of behavior which changes on two different time scales, one rapid and one slow. Additionally, because of the presence of the nonhomogeneous forcing term tf, we show that there is a component of the solution which will vary only on a very large spatial scale. Since even the linearized wave equation can give rise to persistent large spatial scale waves under the right conditions, the implication is that certain storms could be responsible for the generation of large-scale waves. Numerical simulations in one and two dimensions confirm analytic results.  相似文献   

16.
In this paper, we investigate the instability of one‐dimensionally stable periodic traveling wave solutions of the generalized Korteweg‐de Vries equation to long wavelength transverse perturbations in the generalized Zakharov–Kuznetsov equation in two space dimensions. By deriving appropriate asymptotic expansions of the periodic Evans function, we derive an index which yields sufficient conditions for transverse instabilities to occur. This index is geometric in nature, and applies to any periodic traveling wave profile under some minor smoothness assumptions on the nonlinearity. We also describe the analogous theory for periodic traveling waves of the generalized Benjamin–Bona–Mahony equation to long wavelength transverse perturbations in the gBBM–Zakharov–Kuznetsov equation.  相似文献   

17.
We study the linear stability of traveling wave solutions for the nonlinear wave equation and coupled nonlinear wave equations. It is shown that periodic waves of the dnoidal type are spectrally unstable with respect to co-periodic perturbations. Our arguments rely on a careful spectral analysis of various self-adjoint operators, both scalar and matrix and on instability index count theory for Hamiltonian systems.  相似文献   

18.
Many models of shallow water waves, such as the famous Camassa–Holm equation, admit peaked solitary waves. However, it is an open question whether or not the widely accepted peaked solitary waves can be derived from the fully nonlinear wave equations. In this paper, a unified wave model (UWM) based on the symmetry and the fully nonlinear wave equations is put forward for progressive waves with permanent form in finite water depth. Different from traditional wave models, the flows described by the UWM are not necessarily irrotational at crest, so that it is more general. The unified wave model admits not only the traditional progressive waves with smooth crest, but also a new kind of solitary waves with peaked crest that include the famous peaked solitary waves given by the Camassa–Holm equation. Besides, it is proved that Kelvin’s theorem still holds everywhere for the newly found peaked solitary waves. Thus, the UWM unifies, for the first time, both of the traditional smooth waves and the peaked solitary waves. In other words, the peaked solitary waves are consistent with the traditional smooth ones. So, in the frame of inviscid fluid, the peaked solitary waves are as acceptable and reasonable as the traditional smooth ones. It is found that the peaked solitary waves have some unusual and unique characteristics. First of all, they have a peaked crest with a discontinuous vertical velocity at crest. Especially, unlike the traditional smooth waves that are dispersive with wave height, the phase speed of the peaked solitary waves has nothing to do with wave height, but depends (for a fixed wave height) on its decay length, i.e., the actual wavelength: in fact, the peaked solitary waves are dispersive with the actual wavelength when wave height is fixed. In addition, unlike traditional smooth waves whose kinetic energy decays exponentially from free surface to bottom, the kinetic energy of the peaked solitary waves either increases or almost keeps the same. All of these unusual properties show the novelty of the peaked solitary waves, although it is still an open question whether or not they are reasonable in physics if the viscosity of fluid and surface tension are considered.  相似文献   

19.
The normal mode instability study of a steady Rossby‐Haurwitz wave is considered both theoretically and numerically. This wave is exact solution of the nonlinear barotropic vorticity equation describing the dynamics of an ideal fluid on a rotating sphere, as well as the large‐scale barotropic dynamics of the atmosphere. In this connection, the stability of the Rossby‐Haurwitz wave is of considerable mathematical and meteorological interest. The structure of the spectrum of the linearized operator in case of an ideal fluid is studied. A conservation law for perturbations to the Rossby‐Haurwitz wave is obtained and used to get a necessary condition for its exponential instability. The maximum growth rate of unstable modes is estimated. The orthogonality of the amplitude of a non‐neutral or non‐stationary mode to the Rossby‐Haurwitz wave is shown in two different inner products. The analytical results obtained are used to test and discuss the accuracy of a numerical spectral method used for the normal mode stability study of arbitrary flow on a sphere. The comparison of the numerical and theoretical results shows that the numerical instability study method works well in case of such smooth solutions as the zonal flows and Rossby‐Haurwitz waves. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2005  相似文献   

20.
We derive the Whitham modulation equations for the Zakharov–Kuznetsov equation via a multiple scales expansion and averaging two conservation laws over one oscillation period of its periodic traveling wave solutions. We then use the Whitham modulation equations to study the transverse stability of the periodic traveling wave solutions. We find that all periodic solutions traveling along the first spatial coordinate are linearly unstable with respect to purely transversal perturbations, and we obtain an explicit expression for the growth rate of perturbations in the long wave limit. We validate these predictions by linearizing the equation around its periodic solutions and solving the resulting eigenvalue problem numerically. We also calculate the growth rate of the solitary waves analytically. The predictions of Whitham modulation theory are in excellent agreement with both of these approaches. Finally, we generalize the stability analysis to periodic waves traveling in arbitrary directions and to perturbations that are not purely transversal, and we determine the resulting domains of stability and instability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号