首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Results of research into the use of fuzzy sets for handling various forms of uncertainty in the optimal design and control of complex systems are presented. A general approach to solving a wide class of optimization problems containing fuzzy coefficients in objective functions and constraints is described. It involves a modification of traditional mathematical programming methods and is associated with formulating and solving one and the same problem within the framework of mutually conjugated models. This approach allows one to maximally cut off dominated alternatives from below as well as from above. The subsequent contraction of the decision uncertainty region is associated with reduction of the problem to multicriteria decision making in a fuzzy environment. The general approach is applied within the context of a fuzzy discrete optimization model that is based on a modification of discrete optimization algorithms. Prior to application of these algorithms there is a transition from a model with fuzzy coefficients in objective functions and constraints to an equivalent analog with fuzzy coefficients in objective functions alone. The results of the paper are of a universal character and are already being used to solve problems of power engineering.  相似文献   

2.
Mixed-integer optimization models for chemical process planning typically assume that model parameters can be accurately predicted. As precise forecasts are difficult to obtain, process planning usually involves uncertainty and ambiguity in the data. This paper presents an application of fuzzy programming to process planning. The forecast parameters are assumed to be fuzzy with a linear or triangular membership function. The process planning problem is then formulated in terms of decision making in a fuzzy environment with fuzzy constraints and fuzzy net present value goals. The model is transformed to a deterministic mixed-integer linear program or mixed-integer nonlinear program depending on the type of uncertainty involved in the problem. For the nonlinear case, a global optimization algorithm is developed for its solution. This algorithm is applicable to general possibilistic programs and can be used as an alternative to the commonly used bisection method. Illustrative examples and computational results for a petrochemical complex with 38 processes and 24 products illustrate the applicability of the developed models and algorithms.  相似文献   

3.
Probability constraints play a key role in optimization problems involving uncertainties. These constraints request that an inequality system depending on a random vector has to be satisfied with a high enough probability. In specific settings, copulæ can be used to model the probabilistic constraints with uncertainty on the left-hand side. In this paper, we provide eventual convexity results for the feasible set of decisions under local generalized concavity properties of the constraint mappings and involved copulæ. The results cover all Archimedean copulæ. We consider probabilistic constraints wherein the decision and random vector are separated, i.e. left/right-hand side uncertainty. In order to solve the underlying optimization problem, we propose and analyse convergence of a regularized supporting hyperplane method: a stabilized variant of generalized Benders decomposition. The algorithm is tested on a large set of instances involving several copulæ among which the Gaussian copula. A Numerical comparison with a (pure) supporting hyperplane algorithm and a general purpose solver for non-linear optimization is also presented.  相似文献   

4.
The robust optimization methodology is known as a popular method dealing with optimization problems with uncertain data and hard constraints. This methodology has been applied so far to various convex conic optimization problems where only their inequality constraints are subject to uncertainty. In this paper, the robust optimization methodology is applied to the general nonlinear programming (NLP) problem involving both uncertain inequality and equality constraints. The uncertainty set is defined by conic representable sets, the proposed uncertainty set is general enough to include many uncertainty sets, which have been used in literature, as special cases. The robust counterpart (RC) of the general NLP problem is approximated under this uncertainty set. It is shown that the resulting approximate RC of the general NLP problem is valid in a small neighborhood of the nominal value. Furthermore a rather general class of programming problems is posed that the robust counterparts of its problems can be derived exactly under the proposed uncertainty set. Our results show the applicability of robust optimization to a wider area of real applications and theoretical problems with more general uncertainty sets than those considered so far. The resulting robust counterparts which are traditional optimization problems make it possible to use existing algorithms of mathematical optimization to solve more complicated and general robust optimization problems.  相似文献   

5.
In this paper a general bottleneck combinatorial optimization problem with uncertain element weights modeled by fuzzy intervals is considered. A possibilistic formalization of the problem and solution concepts in this setting, which lead to compute robust solutions under fuzzy weights, are given. Some algorithms for finding a solution according to the introduced concepts and evaluating optimality of solutions and elements are provided. These algorithms are polynomial for bottleneck combinatorial optimization problems with uncertain element weights, if their deterministic counterparts are polynomially solvable.  相似文献   

6.
Robust design optimization (RDO) problems can generally be formulated by incorporating uncertainty into the corresponding deterministic problems. In this context, a careful formulation of deterministic equality constraints into the robust domain is necessary to avoid infeasible designs under uncertain conditions. The challenge of formulating equality constraints is compounded in multiobjective RDO problems. Modeling the tradeoffs between the mean of the performance and the variation of the performance for each design objective in a multiobjective RDO problem is itself a complex task. A judicious formulation of equality constraints adds to this complexity because additional tradeoffs are introduced between constraint satisfaction under uncertainty and multiobjective performance. Equality constraints under uncertainty in multiobjective problems can therefore pose a complicated decision making problem. In this paper, we provide a new problem formulation that can be used as an effective multiobjective decision making tool, with emphasis on equality constraints. We present two numerical examples to illustrate our theoretical developments.  相似文献   

7.
Summary We present a general modeling framework for therobust optimization of linear network problems with uncertainty in the values of the right-hand side. In contrast to traditional approaches in mathematical programming, we use scenarios to characterize the uncertainty. Solutions are obtained for each scenario and these individual scenarios are aggregated to yield a nonanticipative or implementable policy that minimizes the regret of wrong decisions. A given solution is termed robust if it minimizes the sum over the scenarios of the weighted upper difference between the objective function value for the solution and the objective function value for the optimal solution for each scenario, while satisfying certain nonanticipativity constraints. This approach results in a huge model with a network submodel per scenario plus coupling constraints. Several decomposition approaches are considered, namely Dantzig-Wolfe decomposition, various types of Benders decomposition and different quadratic network approaches for approximating Augmented Lagrangian decomposition. We present computational results for these methods, including two implementation versions of the Lagrangian based method: a sequential implementation and a parallel implementation on a network of three workstations.  相似文献   

8.
Planning for water quality management systems is complicated by a variety of uncertainties and nonlinearities, where difficulties in formulating and solving the resulting inexact nonlinear optimization problems exist. With the purpose of tackling such difficulties, this paper presents the development of an interval-fuzzy nonlinear programming (IFNP) model for water quality management under uncertainty. Methods of interval and fuzzy programming were integrated within a general framework to address uncertainties in the left- and right-hand sides of the nonlinear constraints. Uncertainties in water quality, pollutant loading, and the system objective were reflected through the developed IFNP model. The method of piecewise linearization was developed for dealing with the nonlinearity of the objective function. A case study for water quality management planning in the Changsha section of the Xiangjiang River was then conducted for demonstrating applicability of the developed IFNP model. The results demonstrated that the accuracy of solutions through linearized method normally rises positively with the increase of linearization levels. It was also indicated that the proposed linearization method was effective in dealing with IFNP problems; uncertainties can be communicated into optimization process and generate reliable solutions for decision variables and objectives; the decision alternatives can be obtained by adjusting different combinations of the decision variables within their solution intervals. It also suggested that the linearized method should be used under detailed error analysis in tackling IFNP problems.  相似文献   

9.
10.
The computational complexity of linear and nonlinear programming problems depends on the number of objective functions and constraints involved and solving a large problem often becomes a difficult task. Redundancy detection and elimination provides a suitable tool for reducing this complexity and simplifying a linear or nonlinear programming problem while maintaining the essential properties of the original system. Although a large number of redundancy detection methods have been proposed to simplify linear and nonlinear stochastic programming problems, very little research has been developed for fuzzy stochastic (FS) fractional programming problems. We propose an algorithm that allows to simultaneously detect both redundant objective function(s) and redundant constraint(s) in FS multi-objective linear fractional programming problems. More precisely, our algorithm reduces the number of linear fuzzy fractional objective functions by transforming them in probabilistic–possibilistic constraints characterized by predetermined confidence levels. We present two numerical examples to demonstrate the applicability of the proposed algorithm and exhibit its efficacy.  相似文献   

11.
This paper is devoted to the study of the pseudo-Lipschitz property of Pareto solution map for the parametric linear semi-infinite vector optimization problem (LSVO). We establish new sufficient conditions for the pseudo-Lipschitz property of the Pareto solution map of (LSVO) under continuous perturbations of the right-hand side of the constraints and linear perturbations of the objective function. Examples are given to illustrate the results obtained.  相似文献   

12.
Because of the existence of non-stochastic factors in stock markets, several possibilistic portfolio selection models have been proposed, where the expected return rates of securities are considered as fuzzy variables with possibilistic distributions. This paper deals with a possibilistic portfolio selection model with interval center values. By using modality approach and goal attainment approach, it is converted into a nonlinear goal programming problem. Moreover, a genetic algorithm is designed to obtain a satisfactory solution to the possibilistic portfolio selection model under complicated constraints. Finally, a numerical example based on real world data is also provided to illustrate the effectiveness of the genetic algorithm.  相似文献   

13.
Since the observed values of security returns in real-world problems are sometimes imprecise or vague, an increasing effort in research is devoted to study the properties of risk measures in fuzzy portfolio optimization problems. In this paper, a new risk measure is suggested to gauge the risk resulted from fuzzy uncertainty. For this purpose, the absolute deviation and absolute semi-deviation are first defined for fuzzy variable by nonlinear fuzzy integrals. To compute effectively the absolute semi-deviations of single fuzzy variable as well as its functions, this paper discusses the methods of computing the absolute semi-deviation by classical Lebesgue–Stieltjes (L–S) integral. After that, several useful absolute deviation and absolute semi-deviation formulas are established for common triangular, trapezoidal and normal fuzzy variables. Applying the absolute semi-deviation as a new risk measure in portfolio optimization, three classes of fuzzy portfolio optimization models are developed by combining the absolute semi-deviation with expected value operator and credibility measure. Based on the analytical representation of absolute semi-deviations, the established fuzzy portfolio selection models can be turned into their equivalent piecewise linear or fractional programming problems. Since the absolute semi-deviation is a piecewise fractional function and pseudo-convex on the feasible subregions of deterministic programming models, we take advantage of the structural characteristics to design a domain decomposition method to separate a deterministic programming problem into three convex subproblems, which can be solved by conventional solution methods or general-purpose software. Finally, some numerical experiments are performed to demonstrate the new modeling idea and the effectiveness of the solution method.  相似文献   

14.
When the information about uncertainty cannot be quantified in a simple, probabilistic way, the topic of possibilistic decision theory is often a natural one to consider. The development of possibilistic decision theory has lead to the proposition a series of possibilistic criteria, namely: optimistic and pessimistic possibilistic qualitative criteria [7], possibilistic likely dominance [2], [9], binary possibilistic utility [11] and possibilistic Choquet integrals [24]. This paper focuses on sequential decision making in possibilistic decision trees. It proposes a theoretical study on the complexity of the problem of finding an optimal strategy depending on the monotonicity property of the optimization criteria – when the criterion is transitive, this property indeed allows a polytime solving of the problem by Dynamic Programming. We show that most possibilistic decision criteria, but possibilistic Choquet integrals, satisfy monotonicity and that the corresponding optimization problems can be solved in polynomial time by Dynamic Programming. Concerning the possibilistic likely dominance criteria which is quasi-transitive but not fully transitive, we propose an extended version of Dynamic Programming which remains polynomial in the size of the decision tree. We also show that for the particular case of possibilistic Choquet integrals, the problem of finding an optimal strategy is NP-hard. It can be solved by a Branch and Bound algorithm. Experiments show that even not necessarily optimal, the strategies built by Dynamic Programming are generally very good.  相似文献   

15.
In this study, a two-stage fuzzy robust integer programming (TFRIP) method has been developed for planning environmental management systems under uncertainty. This approach integrates techniques of robust programming and two-stage stochastic programming within a mixed integer linear programming framework. It can facilitate dynamic analysis of capacity-expansion planning for waste management facilities within a multi-stage context. In the modeling formulation, uncertainties can be presented in terms of both possibilistic and probabilistic distributions, such that robustness of the optimization process could be enhanced. In its solution process, the fuzzy decision space is delimited into a more robust one by specifying the uncertainties through dimensional enlargement of the original fuzzy constraints. The TFRIP method is applied to a case study of long-term waste-management planning under uncertainty. The generated solutions for continuous and binary variables can provide desired waste-flow-allocation and capacity-expansion plans with a minimized system cost and a maximized system feasibility.  相似文献   

16.
We develop a duality theory for weakly minimal points of multiple objective linear programs which has several advantages in contrast to other theories. For instance, the dual variables are vectors rather than matrices and the dual feasible set is a polyhedron. We use a set-valued dual objective map the values of which have a very simple structure, in fact they are hyperplanes. As in other set-valued (but not in vector-valued) approaches, there is no duality gap in the case that the right-hand side of the linear constraints is zero. Moreover, we show that the whole theory can be developed by working in a complete lattice. Thus the duality theory has a high degree of analogy to its classical counterpart. Another important feature of our theory is that the infimum of the set-valued dual problem is attained in a finite set of vertices of the dual feasible domain. These advantages open the possibility of various applications such as a dual simplex algorithm. Exemplarily, we discuss an application to a Markowitz-type bicriterial portfolio optimization problem where the risk is measured by the Conditional Value at Risk.  相似文献   

17.
Optimizing the charge in secondary steel production is challenging because the chemical composition of the scrap is highly uncertain. The uncertainty can cause a considerable risk of the scrap mix failing to satisfy the composition requirements for the final product. In this paper, we represent the uncertainty based on fuzzy set theory and constrain the failure risk based on a possibility measure. Consequently, the scrap charge optimization problem is modeled as a fuzzy chance constrained linear programming problem. Since the constraints of the model mainly address the specification of the product, the crisp equivalent of the fuzzy constraints should be less relaxed than that purely based on the concept of soft constraints. Based on the application context we adopt a strengthened version of soft constraints to interpret fuzzy constraints and form a crisp model with consistent and compact constraints for solution. Simulation results based on realistic data show that the failure risk can be managed by proper combination of aspiration levels and confidence factors for defining fuzzy numbers. There is a tradeoff between failure risk and material cost. The presented approach applies also for other scrap-based production processes.  相似文献   

18.
Two basic problems in reliability-based structural optimization   总被引:5,自引:0,他引:5  
Optimization of structures with respect to performance, weight or cost is a well-known application of mathematical optimization theory. However optimization of structures with respect to weight or cost under probabilistic reliability constraints or optimization with respect to reliability under cost/weight constraints has been subject of only very few studies. The difficulty in using probabilistic constraints or reliability targets lies in the fact that modern reliability methods themselves are formulated as a problem of optimization. In this paper two special formulations based on the so-called first-order reliability method (FORM) are presented. It is demonstrated that both problems can be solved by a one-level optimization problem, at least for problems in which structural failure is characterized by a single failure criterion. Three examples demonstrate the algorithm indicating that the proposed formulations are comparable in numerical effort with an approach based on semi-infinite programming but are definitely superior to a two-level formulation.  相似文献   

19.
Scatter search for chemical and bio-process optimization   总被引:3,自引:1,他引:2  
Scatter search is a population-based method that has recently been shown to yield promising outcomes for solving combinatorial and nonlinear optimization problems. Based on formulations originally proposed in 1960s for combining decision rules and problem constraints such as the surrogate constraint method, scatter search uses strategies for combining solution vectors that have proved effective in a variety of problem settings. In this paper, we develop a general purpose heuristic for a class of nonlinear optimization problems. The procedure is based on the scatter search methodology and treats the objective function evaluation as a black box, making the search algorithm context-independent. Most optimization problems in the chemical and bio-chemical industries are highly nonlinear in either the objective function or the constraints. Moreover, they usually present differential-algebraic systems of constraints. In this type of problem, the evaluation of a solution or even the feasibility test of a set of values for the decision variables is a time-consuming operation. In this context, the solution method is limited to a reduced number of solution examinations. We have implemented a scatter search procedure in Matlab (Mathworks, 2004) for this special class of difficult optimization problems. Our development goes beyond a simple exercise of applying scatter search to this class of problems, but presents innovative mechanisms to obtain a good balance between intensification and diversification in a short-term search horizon. Computational comparisons with other recent methods over a set of benchmark problems favor the proposed procedure.  相似文献   

20.
On the Evaluation of Uncertain Courses of Action   总被引:3,自引:0,他引:3  
We consider the problem of decision making under uncertainty. The fuzzy measure is introduced as a general way of representing available information about the uncertainty. It is noted that generally in uncertain environments the problem of comparing alternative courses of action is difficult because of the multiplicity of possible outcomes for any action. One approach is to convert this multiplicity of possible of outcomes associated with an alternative into a single value using a valuation function. We describe various ways of providing a valuation function when the uncertainty is represented using a fuzzy measure. We then specialize these valuation functions to the cases of probabilistic and possibilistic uncertainty.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号