首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Fluorescent sunlamps are commonly employed as convenient sources in photobiology experiments. The ability of Kodacel to filter photobiologically irrelevant UVC wavelengths has been described. Yet there still remains a major unaddressed issue--the over representation of UVB in the output. The shortest terrestrial solar wavelengths reaching the surface are approximately 295 nm with the 295-320 nm range comprising approximately 4% of the solar UV irradiance. In Kodacel-filtered sunlamps, 47% of the UV output falls in this range. Consequently, in studies designed to understand skin photobiology after solar exposure, the use of these unfiltered sunlamps may result in misleading, or even incorrect conclusions. To demonstrate the importance of using an accurate representation of the UV portion of sunlight, the ability of different ultraviolet radiation (UVR) sources to induce the expression of a reporter gene was assayed. Unfiltered fluorescent sunlamps (FS lamps) induce optimal chloramphenicol acetyltransferase (CAT) activity at apparently low doses (10-20 J/cm2). Filtering the FS lamps with Kodacel raised the delivered dose for optimal CAT activity to 50-60 mJ/cm2. With the more solar-like UVA-340 lamps somewhat lower levels of CAT activities were induced even though the apparent delivered doses were significantly greater than for either the FS or Kodacel-filtered sunlamp (KFS lamps). When DNA from parallel-treated cells was analyzed for photoproduct formation by a radioimmuneassay, it was shown that the induction of CAT activity correlated with the level of induced photoproduct formation regardless of the source employed.  相似文献   

2.
Spectral UV irradiance on vertical surfaces: a case study   总被引:1,自引:0,他引:1  
The UV spectral irradiance on horizontal and vertically oriented surfaces was measured throughout a cloudless day (18 July 1995) at Izana station, Tenerife, using a Bentham DTM300 spectroradiometer scanning from 290 to 500 nm in steps of 5 nm. Results show that irradiance measured on a horizontal surface is not proportional to irradiance on a vertical surface. The relation between the two depends upon orientation of the vertical surface, zenith angle and wavelength. At short UVB wavelengths surfaces directed toward the solar azimuth received their maximum irradiances much closer to solar noon than the maxima for longer wavelengths. Some vertical surfaces also received significantly more irradiance than the horizontal surface at long wavelengths during all but the central hours of the day, while at short wavelengths all vertical irradiances were less than the horizontal except for the measurements at the extreme ends of the day. Erythemally effective radiation followed the diurnal pattern of irradiations for short UVB wavelengths.  相似文献   

3.
Abstract— We present an analytic characterization of upward and downward diffuse spectral irradiance for the wavelength range 280–380 nm, solar zenith angle range from 0 to 86, altitude range from 0 to 5 km and for non-zero surface albedo. This work is a modification and extension of the previous work of Green, Cross and Smith based upon the radiative transfer calculations of Braslau, Dave and Halpern. Guided by these irradiance systematics we develop an analytic characterization of diffuse spectral scalar irradiance or actinic flux also broken down into upward and downward components for the above wavelengths, solar zenith angles and altitudes, for non-zero surface albedo utilizing the actinic flux calculations of Peterson.  相似文献   

4.
Abstract— The construction of a new type of microprobe for the measurement of scalar irradiance (integral dose rate) in the UV down to wavelengths of 250 nm is described. The microprobes were made from tapered standard optical fibers and a tip-diffuser of magnesia/silica vitroceramic. The sensing tips were ca 100 μm in diameter and had maximal deviations in the angular response of ± 15%. I present measurements of scalar irradiance at high spatial resolution within dry beach sand and suspensions of microorganisms. These two media are environments in which microorganisms are exposed to UV, either under natural (sand) or laboratory conditions (suspensions). In both cases, the space distribution of UV scalar irradiance, and thus the distribution of integral dose rates, departed significantly from that predicted by absorptive effects alone. The results underscore the importance of small-scale, in situ measurements of scalar irradiance for UV dosimetry in such scattering media.  相似文献   

5.
Ultraviolet radiation and the snow alga Chlamydomonas nivalis (Bauer) Wille   总被引:3,自引:0,他引:3  
Aplanospores of Chlamydomonas nivalis are frequently found in high-altitude, persistent snowfields where they are photosynthetically active despite cold temperatures and high levels of visible and ultraviolet (UV) radiation. The goals of this work were to characterize the UV environment of the cells in the snow and to investigate the existence and localization of screening compounds that might prevent UV damage. UV irradiance decreased precipitously in snow, with UV radiation of wavelengths 280-315 nm and UV radiation of wavelengths 315-400 nm dropping to 50% of incident levels in the top 1 and 2 cm, respectively. Isolated cell walls exhibited UV absorbance, possibly by sporopollenin, but this absorbance was weak in images of broken or plasmolyzed cells observed through a UV microscope. The cells also contained UV-absorbing cytoplasmic compounds, with the extrachloroplastic carotenoid astaxanthin providing most of the screening. Additional screening compound(s) soluble in aqueous methanol with an absorption maximum at 335 nm played a minor role. Thus, cells are protected against potentially high levels of UV radiation by the snow itself when they live several centimeters beneath the surface, and they rely on cellular screening compounds, chiefly astaxanthin, when located near the surface where UV fluxes are high.  相似文献   

6.
Abstract— The extreme variation in biological effectiveness of the various components of solar ultraviolet radiation (solar UV) which reaches the earth's surface, especially photons of wavelengths between 295 and 330 nm, makes the dosimetry of solar UV a complex and, as yet, unresolved problem. A proper weighting of the various components of solar UV would permit expression of expsoure as a single parameter (dose). Weighting could compensate for the variations in composition of solar UV which might occur during exposure or the differences in sources of UV radiations; weighting would permit comparison of exposures at various locations on the earth and extrapolation of laboratory observations to field situations where wavelength composition might be rather different. Various radiation-sensitive microorganisms have been proposed as biological dosimeters. Biological dosimeters automatically weight the subcomponents of solar UV differently than a purely physical irradiance meter. We have examined the available evidence regarding the weighting which repair-defective mutants provide in comparison with response of a number of wild-type organisms and would caution investigators that, for broad-band UV sources, especially those with significant biological actions through the range of 300–330 nm, repair-sensitive mutants may improperly weight the components, leading to errors of dosimetry and thus to possible errors of interpretation of results of solar UV exposure of wild-type organisms  相似文献   

7.
The skin is exposed to ultraviolet radiation (UVR) from natural or artificial sources on a daily basis. The effects of chronic low dose exposure merit investigation, even when these effects are neither conspicuous nor clinically assessable. The purpose of the present study was to define a relative spectral UV irradiance that is representative of frequent nonextreme sun exposure conditions and therefore more appropriate for studies of the long-term and daily effects of solar UV on the skin. Solar spectral UV irradiance values were calculated for different dates and locations by using a radiative transfer model. The spectral irradiance values obtained when the solar elevation is lower than 45 degrees were averaged. An important feature is the dUVA (320-400 nm) to dUVB (290-320 nm) irradiance values ratio, which was found to be 27.3 for the overall average. When the months corresponding to extreme irradiance values (low or high) were excluded from the calculations, the dUVA to dUVB ratio ranged from 27.2 to 27.5. The mean spectral irradiance of the model presented here represents environmental UV exposure conditions and can be used both as a standard to investigate the biological effects of a nonextreme UVR and to assess the effectiveness of products for daily skin protection.  相似文献   

8.
The management of radiant exposure to ultraviolet (UV) radiation, especially in the wavelength range from 100 nm to 280 nm (i.e. UV-C), is important for virus inactivation or photobiological safety. Recently, many commercial UV radiometers have been used to measure UV-C irradiance for industrial and public applications. The accuracy of the four types of commercial UV radiometers was investigated by comparing the reference irradiance values obtained from the spectral irradiance standard. It was found that the displayed values of the UV radiometers have discrepancies, such that the measured value can be more than twice the actual value in a certain case. The spectral mismatch between the calibration and test sources is a major factor in the discrepancies in the UV-C measurements. With spectral mismatch correction, most corrected values show a tendency to improve the result to approaching the reference values within 20%. Users need to provide spectral information about the source and radiometer used for UV-C measurement.  相似文献   

9.
The spectral properties of selected UV-blocking and UV-transmitting covering materials were characterized by means of a UV-VIS spectroradiometer or a UV-VIS spectrometer to provide researchers and growers with guidelines for selecting suitable materials for use in studying the effects of ambient solar UV radiation on the production of tomatoes and other high-value crops in high tunnels. A survey was made of a wide range of plastic covering materials to identify commercially available products that had the desired characteristics of transmitting high levels of photosynthetically active radiation and of being stable under ambient solar UV radiation. The study was focused on evaluating films that either blocked or transmitted UV wavelengths below 380 nm to determine comparative growth, yield and market quality and to provide a tool for integrated pest management. Based on this survey, two contrasting covering materials of similar thickness (0.152 mm) and durability (4-year polyethylene), one a UV-blocking film and the other a UV-transmitting film, were selected and used to cover two high tunnels at Beltsville, MD. Spectroradiometric measurements were made to determine comparative spectral irradiance in these two high tunnels covered with these materials and under ambient solar UV radiation. Comparative measurements were also made of selected glass and plastic materials that have been used in UV exclusion studies.  相似文献   

10.
Abstract— The spectral albedo of the earth's surface, i.e. the ratio between spectral irradiance reflected by the ground to all directions and global irradiance, was measured by a spectroradiometer in the UV and visible region from 290 nm to 800 nm with a spectral resolution of 1.5 nm at steps of 2 nm in the UV (290–400 nm) and 10 nm in the visible (400–800 nm) region. The measurements were performed over bare fertile soil, sand at the beach, concrete (autobahn) and snow as well as over different types of vegetation (grass, oats, rye, sugar-beet, stubble). As the albedo increases with increasing wavelengths for most types of surfaces considered, it is smaller in the UV than in the visible region. In the UVB region (λ < 315 nm) the measured albedo is as small as 0.016-0.017 over vegetation, 0.04-0.05 over bare fertile soil, 0.07-0.10 over concrete ("autobahn") and 0.62-0.76% over polluted snow with a small wavelength dependence. A somewhat higher albedo occurs in the UVA region (315 < λ < 400 nm) with values ranging from 0.02 over vegetation to 0.05 to 0.08 over bare soil. The albedo over dry bright sand, which is typically found at the beach, is significantly higher (0.14 at 300 nm to 0.24 at 400 nm) than over other snow-free surfaces, thus leading to an enhanced dose of biologically effective radiation at the beach.  相似文献   

11.
Abstract— Direct measurements of the downwelling spectral irradiance in the middle UV (280–340 nm) have been made for a range of solar zenith angles (20°-70°). These measurements were made for a marine atmosphere at equatorial latitudes. We fit these data to two semi-empirical analytic representations, from which quantitative calculations of spectral irradiance in the middle UV incident at the ocean surface can be made. The formulae accommodate variation in wavelength, solar zenith angle, ozone thickness, aerosol thickness and surface albedo. Our purpose is to provide marine photobiologists and photochemists with a basis for estimating middle UV radiation levels reaching the ocean surface and the approximate changes caused by manmade alterations of the ozone layer.  相似文献   

12.
The synthesis or accumulation of mycosporine-like amino acids (MAAs) is an important UV tolerance mechanism in aquatic organisms. To investigate the wavelength dependence of MAA synthesis in the marine dinoflagellate Gyrodinium dorsum, the organism was exposed to polychromatic radiation (PAR and UV) from a solar simulator for up to 72 h. Different irradiance spectra were produced by inserting various cut-off filters between lamp and samples. A polychromatic action spectrum for the synthesis of MAA synthesis was constructed. PAR and long wavelength UV-A radiation showed almost no effect while the most effective wavelength range was around 310 nm. Shorter wavelengths where less effective in the induction of MAA synthesis. Wavelengths below 300 nm damaged the organisms severely as indicated by a decrease in chlorophyll a absorption.  相似文献   

13.
Cultures of the marine dinoflagellate Gyrodinium dorsum have been exposed to polychromatic radiation (photosynthetically active radiation and UV) from a solar simulator for up to 72 h. Different irradiance spectra in the ultraviolet are produced by inserting cut-off filters between lamp and samples. The mycosporine-like amino acid (MAA) content and composition are investigated by spectroscopic and chromatographic analysis. The study reveals that G. dorsum contains a complex mixture of several aminocyclohexenimine-MAAs and one aminocyclohexenone-MAA. UV irradiation around 320 nm induces an increase in the concentration of all MAAs in the samples. In contrast, exposure to short-wavelength UV-B radiation results in decreased overall MAA production. Furthermore, there is a spectral shift in the absorption of the MAA mixture towards shorter wavelengths, indicating that short-wavelength UV-B induces an altered MAA composition. The amount of MAAs is normalized to the chlorophyll a concentration.  相似文献   

14.
Abstract— Escherichia coli DNA was irradiated with various wavelengths of monochromatic UV light from 254 to 320 nm, and the relative yields of the different cyclobutane pyrimidine dimers determined. Cytosine–thymine dimers (C < > T) were more frequent than thymine dimers (T < > T) at low fluences of 300 and 313 nm light, whereas the reverse was true at either longer or shorter wavelengths. Thus, in the solar UV range deemed responsible for skin cancer (i.e. 295–315 nm), C < > T are probably more important than T < > T.  相似文献   

15.
An experimental method complete with theoretical considerations is presented for the measurement of different biological UV doses. The method is based on the high sensitivity of phage T7 activity to UV light. A precisely determined T7 inactivation action spectrum is presented over a wide optical range (240-514 nm). Using the T7 spectral sensitivity in relation to the minimal erythema dose (MED) and the effective spectral irradiance from solar radiation for the MED, an example is given to determine the MED value based on the measurement of T7 inactivation for a given case. The advantages and applicability of the method are discussed.  相似文献   

16.
The alga Chlamydomonas nivalis lives in a high-light, cold environment: persistent alpine snowfields. Since the algae in snow receive light from all angles, the photon fluence rate is the critical parameter for photosynthesis, but it is rarely measured. We measured photon irradiance and photon fluence rate in the snow that contained blooms of C. nivalis. On a cloudless day the photon fluence rate at the snow surface was nearly twice the photon irradiance, and it can be many times greater than the photon irradiance when the solar angle is low or the light is diffuse. Beneath the surface the photon fluence rate can be five times the photon irradiance. Photon irradiance and photon fluence rate declined exponentially with depth, approximating the Bouguer-Lambert relationship. We used an integrating sphere to measure the spectral characteristics of a monolayer of cells and microscopic techniques to examine the spectral characteristics of individual cells. Astaxanthin blocked blue light and unknown absorbers blocked UV radiation; the penetration of these wavelengths through whole cells was negligible. We extracted astaxanthin, measured absorbance on a per-cell basis and estimated that the layer of astaxanthin within cells would allow only a small percentage of the blue light to reach the chloroplast, potentially protecting the chloroplast from excessive light.  相似文献   

17.
Three normal human skin fibroblast cell lines were exposed to the simulated solar UV radiation produced by a fluorescent sunlamp under conditions in which the wavelength components shorter than either 295, 305 or 315 nm were excluded. The level of DNA-protein crosslinks (DPC) was then measured in those cells using the alkaline elution technique either immediately after irradiation or following a 24 h incubation. In each case, cells were exposed to fluences that induce similar levels of DPC. For cells exposed to 10 kJ m(-2) of sunlamp UV > 295 nm, the level of DPC exhibited a 2-5-fold increase following incubation. In contrast, 40-100% of the DPC were removed upon incubation of cells irradiated with either 100 kJ m(-2) of sunlamp UV > 305 nm or 150 kJ m(-2) of sunlamp UV > 315 nm. A major difference between the effects induced by these wavelength regions is that, in addition to DPC, a very high level of pyrimidine dimers is also produced by sunlamp UV > 295 nm, whereas much lower dimer yields result from treatment with either sunlamp UV > 305 nm or sunlamp UV > 315 nm. A potential role for type II DNA topoisomerase in the formation of these DPC resulting from either the change in conformational structure caused by the presence of a high level of dimers or an involvement of this enzyme in dimer excision repair is discussed.  相似文献   

18.
Acute exposure to UV radiation causes immunosuppression of contact hypersensitivity (CH) responses. Past studies conducted with unfiltered sunlamps emitting nonsolar spectrum UV power (wavelengths below 295 nm) or using excessive UV doses have suggested sunscreens may not prevent UV-induced immunosuppression in mice. This study was thus designed to evaluate critically the effects of different UV energy spectra on the immune protection capacity of sunscreen lotions. Minimum immune suppression doses (MISD), i.e. the lowest UV dose to cause~50% suppression of the CH response to dinitrofluorobenzene in C3H mice, were established for three artificial UV sources. The MISD for each UV source was 0.25 kJ/m2 for unfiltered FS20 sunlamps (FS), 0.90 kJ/m2 for Kodacel-filtered FS20 sunlamps (KFS), which do not emit UV power at wavelengths <290 nm, and 1.35 kJ/m2 for a 1000 W filtered xenon arc lamp solar simulator. Using MISD as baseline, sunscreens with labeled sun protection factors (SPF) of 4, 8, 15 and 30 were tested with each UV source to establish their relative immune protection factors. The immune protection factor of each sunscreen exceeded its labeled SPF in tests conducted with the solar simulator, which has a UV power spectrum (295–400 nm) similar to that of sunlight. Conversely, sunscreen immune protection factors were significantly less than the labeled SPF in tests conducted with FS and KFS. Comparison of the immunosuppression effectiveness spectra showed that relatively small amounts of nonsolar spectrum UV energy, i.e. UVC (200–290 nm) and/or shorter wavelength UVB (between 290 and 295 nm), produced by FS and KFS contributes significantly to the induction of immunosuppression. For example, 36.3% and 3.5% of the total immunosuppressive UV energy from FS and KFS, respectively, lies below 295 nm. Sunscreen absorption spectra showed that transmission of immunosuppressive UV energy below 295 nm for FS was at least eight-fold higher than that for KFS. Compared to the solar simulator UV spectrum the transmission of nonsolar immunosuppressive UV energy through sunscreens was >15-fold higher for FS and ≥1.5-fold higher for KFS. These data demonstrate that relevant evaluations of sunscreen immune protection can only be obtained when tests are conducted with UV sources that produce UV power spectra similar to that of sunlight and UV doses are employed that are based on established MISD.  相似文献   

19.
Abstract— The increase in UV-B radiation(290–320 nm) penetrating to the earth's surface as a result of the chemical depletion of the stratospheric ozone layer is an important environmental concern. In most studies using artificial UV-B sources, the determination of enhanced UV-B radiation effects on plants relies on equivalent UV-A radiation(320–400 nm) from the experimental UV-B fluorescent lamp source, filtered with either cellulose diacetate (CA) to create UV-B treatments, or with type S Mylar or polyester (PE) to create controls (no UV-B). The spectral irradiance in the UV-A was measured in the dark below lamps at two daily UV-B irradiance levels (14.1 and 10.7 W m-2) with CA and PE at two ages. Highly significant differences in UV-A radiation (P 0.01) were measured below the treatment/control pairs at both fluence rates and filter ages. Filter aging was observed, which reduced the UV-A irradiance, especially for PE. The total daily ambient UV-A irradiance was also determined in the glasshouse at three seasons: the fall equinox, summer and winter, from which the total daily UV-A (lamp + ambient) irradiances were calculated. The addition of low to moderate ambient irradiance removed the treatment/control differences in the longwave UV-A(350–400 nm); however, the treatment/contro1 differences remained in the shortwave UV-A(320–350 nm), which was restricted by the glass, and in the total UV-A. The treatment/control differences persisted in the shortwave UV-A for the higher irradiance level, even under high summer ambient light. Also, spectral ratios (UVB:UV-A and shortwave: longwave UV-A) for all treatment groups decreased as the ambient UV-A radiation increased. Therefore, a range of experimental conditions exist where PE-covered lamps do not provide adequate control for UV-A irradiance, relative to the CA treatment, for glasshouse/growth chamber experiments. Potential complications in the interpretation of plant response exist for UV-B experiments conducted under low ambient light conditions (e.g. growth chambers; glasshouse in winter) or high daily UV-B irradiances (e.g. 14 kJ m-2) for those plant responses that are sensitive to UV-A radiation.  相似文献   

20.
Abstract— We have used a flashlamp driven tunable dye laser combined with angle tuned frequency doubling crystals for producing UV-B radiation for action spectra studies of various organisms. Optimum UV-B power generation is needed to provide biologically effective doses at wavelengths greater than 300 nm. Optimizing power will also serve to lengthen the lifetime of dyes and other laser components at shorter wavelengths where UV-B output is more than adequate. While much information is available on dyes and dye performance from manufacturers, little information is available on the use of dyes and dye mixtures for providing the continuous high power spectrum of wavelengths necessary for biological UV action spectroscopy. We have examined a number of dyes and dye mixtures for optimal laser performance at wavelengths from 260 to 330 nm. The dyes and dye mixtures discussed here provide adequate power output in the UV-B wavelength range and have allowed us to perform numerous UV-B action spectra studies using the tunable dye laser.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号