首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The new semiempirical methods, PDDG/PM3 and PDDG/MNDO, have been parameterized for halogens. For comparison, the original MNDO and PM3 were also reoptimized for the halogens using the same training set; these modified methods are referred to as MNDO' and PM3'. For 442 halogen-containing molecules, the smallest mean absolute error (MAE) in heats of formation is obtained with PDDG/PM3 (5.6 kcal/mol), followed by PM3' (6.1 kcal/mol), PDDG/MNDO (6.6 kcal/mol), PM3 (8.1 kcal/mol), MNDO' (8.5 kcal/mol), AM1 (11.1 kcal/mol), and MNDO (14.0 kcal/mol). For normal-valent halogen-containing molecules, the PDDG methods also provide improved heats of formation over MNDO/d. Hypervalent compounds were not included in the training set and improvements over the standard NDDO methods with sp basis sets were not obtained. For small haloalkanes, the PDDG methods yield more accurate heats of formation than are obtained from density functional theory (DFT) with the B3LYP and B3PW91 functionals using large basis sets. PDDG/PM3 and PM3' also give improved binding energies over the standard NDDO methods for complexes involving halide anions, and they are competitive with B3LYP/6-311++G(d,p) results including thermal corrections. Among the semiempirical methods studied, PDDG/PM3 also generates the best agreement with high-level ab initio G2 and CCSD(T) intrinsic activation energies for S(N)2 reactions involving methyl halides and halide anions. Finally, the MAEs in ionization potentials, dipole moments, and molecular geometries show that the parameter sets for the PDDG and reoptimized NDDO methods reduce the MAEs in heats of formation without compromising the other important QM observables.  相似文献   

2.
Extensive testing of the SCC-DFTB method has been performed, permitting direct comparison to data available for NDDO-based semiempirical methods. For 34 diverse isomerizations of neutral molecules containing the elements C, H, N, and O, the mean absolute errors (MAE) for the enthalpy changes are 2.7, 3.2, 5.0, 5.1, and 7.2 kcal/mol from PDDG/PM3, B3LYP/6-31G(d), PM3, SCC-DFTB, and AM1, respectively. A more comprehensive test was then performed by computing heats of formation for 622 neutral, closed-shell H, C, N, and O-containing molecules; the MAE of 5.8 kcal/mol for SCC-DFTB is intermediate between AM1 (6.8 kcal/mol) and PM3 (4.4 kcal/mol) and significantly higher than for PDDG/PM3 (3.2 kcal/mol). Similarly, SCC-DFTB is found to be less accurate for heats of formation of ions and radicals; however, it is more accurate for conformational energetics and intermolecular interaction energies, though none of the methods perform well for hydrogen bonds with strengths under ca. 7 kcal/mol. SCC-DFTB and the NDDO methods all reproduce MP2/cc-pVTZ molecular geometries with average errors for bond lengths, bond angles, and dihedral angles of only ca. 0.01 A, 1.5 degrees , and 3 degrees . Testing was also carried out for sulfur containing molecules; SCC-DFTB currently yields much less accurate heats of formation in this case than the NDDO-based methods due to the over-stabilization of molecules containing an SO bond.  相似文献   

3.
PDDG/PM3 and PDDG/MNDO: improved semiempirical methods   总被引:1,自引:0,他引:1  
Two new semiempirical methods employing a Pairwise Distance Directed Gaussian modification have been developed: PDDG/PM3 and PDDG/MNDO; they are easily implemented in existing software, and yield heats of formation for compounds containing C, H, N, and O atoms with significantly improved accuracy over the standard NDDO schemes, PM5, PM3, AM1, and MNDO. The PDDG/PM3 results for heats of formation also show substantial improvement over density functional theory with large basis sets. The PDDG modifications consist of a single function, which is added to the existing pairwise core repulsion functions within PM3 and MNDO, a reparameterized semiempirical parameter set, and modified computation of the energy of formation of a gaseous atom. The PDDG addition introduces functional group information via pairwise atomic interactions using only atom-based parameters. For 622 diverse molecules containing C, H, N, and O atoms, mean absolute errors in calculated heats of formation are reduced from 4.4 to 3.2 kcal/mol and from 8.4 to 5.2 kcal/mol using the PDDG modified versions of PM3 and MNDO over the standard versions, respectively. Several specific problems are overcome, including the relative stability of hydrocarbon isomers, and energetics of small rings and molecules containing multiple heteroatoms. The internal consistency of PDDG energies is also significantly improved, enabling more reliable analysis of isomerization energies and trends across series of molecules; PDDG isomerization energies show significant improvement over B3LYP/6-31G* results. Comparison of heats of formation, ionization potentials, dipole moments, isomer, and conformer energetics, intermolecular interaction energies, activation energies, and molecular geometries from the PDDG techniques is made to experimental data and values from other semiempirical and ab initio methods.  相似文献   

4.
A large set of charged species arising mainly from protonation or deprotonation of hydrocarbons, alcohols, ethers, carboxylic acids, amines, imines, and nitriles has been studied by means of the semiempirical self-consistent-field (SCF ) molecular orbital (MO ) MNDO method. From the calculated heats of formation of such charged species and those of neutral molecules, MNDO -estimated proton affinities have been obtained and the results compared with experimental gas-phase proton affinities. If the small size anions and acetylides, for which the method predicts heats of formation too large, are ruled out, the mean absolute error in calculated proton affinities is ca. 7 kcal/mol for hydrocarbons (22 acid-base pairs) and ca. 8 kcal/mol for oxygen-containing compounds (25 acid-base pairs). For nitrogen-containing molecules it is necessary to discard, in addition, the values corresponding to the protonation of alkylamines and imines in order to achieve a reasonable mean absolute error of 7–8 kcal/mol.  相似文献   

5.
A three-parametric modification equation and the least-squares approach are adopted to calibrating hybrid density-functional theory energies of C(1)-C(10) straight-chain aldehydes, alcohols, and alkoxides to accurate enthalpies of formation DeltaH(f) and Gibbs free energies of formation DeltaG(f), respectively. All calculated energies of the C-H-O composite compounds were obtained based on B3LYP6-311++G(3df,2pd) single-point energies and the related thermal corrections of B3LYP6-31G(d,p) optimized geometries. This investigation revealed that all compounds had 0.05% average absolute relative error (ARE) for the atomization energies, with mean value of absolute error (MAE) of just 2.1 kJ/mol (0.5 kcal/mol) for the DeltaH(f) and 2.4 kJ/mol (0.6 kcal/mol) for the DeltaG(f) of formation.  相似文献   

6.
Analytical formulation of the second-order geometrical derivatives of energy for the self-consistent-charge density-functional tight-binding (SCC-DFTB) method is presented. To test its quality and numerical performance, the derived formalism has been coded and applied for calculation of harmonic vibrational frequencies for a set of 17 small and medium size molecules. For this set, the average absolute deviation from experiment is 99 cm(-1) for SCC-DFTB vs 62 cm(-1) for the M?ller-Plesset second-order perturbation theory with the cc-pVDZ basis set (MP2/cc-pVDZ) and 32 cm(-1) for the B3LYP density functional method with the same basis set (B3LYP/cc-pVDZ), while the maximal deviation is 465 cm(-1) vs 1,741 cm(-1) for MP2/cc-pVDZ and 112 cm(-1) for B3LYP/cc-pVDZ. The SCC-DFTB results are in reasonable agreement with experiments as well as with ab initio and density-functional results, and are better than other semiempirical methods. The SCC-DFTB method allows for considerable computational time saving when compared to other methods while retaining similar overall accuracy. Data for a series of conjugated polyenes show that an analytical formulation of SCC-DFTB is noticeably faster than its numerical formulation.  相似文献   

7.
MNDO/AM1-type parameters for twelve elements have been optimized using a newly developed method for optimizing parameters for semiempirical methods. With the new method, MNDO-PM3, the average difference between the predicted heats of formation and experimental values for 657 compounds is 7.8 kcal/mol, and for 106 hypervalent compounds, 13.6 kcal/mol. For MNDO the equivalent differences are 13.9 and 75.8 kcal/mol, while those for AM1, in which MNDO parameters are used for aluminum, phosphorus, and sulfur, are 12.7 and 83.1 kcal/mol, respectively. Average errors for ionization potentials, bond angles, and dipole moments are intermediate between those for MNDO and AM1, while errors in bond lengths are slightly reduced.  相似文献   

8.
《Chemical physics》2001,263(2-3):203-219
We calculate relative energies and geometries of important secondary structural elements for small glycine and alanine based polypeptides containing up to eight residues. We compare the performance of the approximate methods AM1, PM3 and self-consistent charge, density-functional tight-binding (SCC-DFTB) to density-functional theory (DFT), Hartree–Fock (HF) and MP2. The SCC-DFTB is able to reproduce structures and relative energies of various peptide models reliably compared to DFT results. The AM1 and PM3 methods show deficiencies in describing important secondary structure elements like extended, helical or turn structures. The discrepancies between different ab initio (HF, MP2) and DFT (B3LYP) methods for medium sized basis sets (6-31G*) also show the need for higher level calculations, since systematic errors found for small molecules may add up when investigating longer polypeptides.  相似文献   

9.
Deficiencies in energetics obtained using the common semiempirical methods, AM1, PM3, and MNDO, may partly be traced to the use of pseudoatomic equivalents for conversion of molecular energies to heats of formation at 298 K. We present an alternative scheme based on the use of bond and group equivalents. Values for the 61 bond and group equivalents necessary for treatment of molecules containing the common organic elements, hydrogen, carbon, nitrogen, and oxygen have been derived. For a set of 583 neutral, closed-shell molecules mean absolute errors in AM1, PM3, and MNDO heats of formation are reduced from 6.6, 4.2, and 8.2 kcal/mol to 2.3, 2.2, and 3.0 kcal/mol, respectively. Several systematic problems are overcome in the present scheme including relative stabilities of branched hydrocarbons, energetics of conjugated systems, heats of formation of long chain hydrocarbons, and enthalpies of molecules containing multiple heteroatoms. Although the approach is restricted to molecules with well-defined functional groups, the equivalents are easy to incorporate and are chemically relevant. This revised procedure allows semiempirical methods to be used for far more reliable evaluations of heats of reactions. Estimates are made of the errors inherent in these semiempirical formalisms, arising from integral approximations and the neglect of explicit treatment of electron correlation effects, while excluding those from inadequate parameterization.  相似文献   

10.
In this paper a new scheme was proposed to calculate the intramolecular hydrogen-bonding energies in peptides and was applied to calculate the intramolecular seven-membered ring N-H...O=C hydrogen-bonding energies of the glycine and alanine peptides. The density-functional theory B3LYP6-31G(d) and B3LYP6-311G(d,p) methods and the second-order Moller-Plesset perturbation theory MP26-31G(d) method were used to calculate the optimal geometries and frequencies of glycine and alanine peptides and related structures. MP26-311++G(d,p), MP26-311++G(3df,2p), and MP2/aug-cc-pVTZ methods were then used to evaluate the single-point energies. It was found that the B3LYP6-31G(d), MP26-31G(d), and B3LYP6-311G(d,p) methods yield almost similar structural parameters for the conformers of the glycine and alanine dipeptides. MP2/aug-cc-pVTZ predicts that the intramolecular seven-membered ring N-H...O=C hydrogen-bonding strength has a value of 5.54 kcal/mol in glycine dipeptide and 5.73 and 5.19 kcal/mol in alanine dipeptides, while the steric repulsive interactions of the seven-membered ring conformers are 4.13 kcal/mol in glycine dipeptide and 6.62 and 3.71 kcal/mol in alanine dipeptides. It was also found that MP26-311++G(3df,2p) gives as accurate intramolecular N-H...O=C hydrogen-bonding energies and steric repulsive interactions as the much more costly MP2/aug-cc-pVTZ does.  相似文献   

11.
We present simple atom and group-equivalent methods that will convert quantum mechanical energies of molecules to gas phase heats of formation of CHNO systems. In addition, we predict heats of sublimation and vaporization derived from information obtained from the quantum-mechanically calculated electrostatic potential of each isolated molecule. The heats of sublimation and vaporization are combined with the aforementioned gas phase heats of formation to produce completely predicted condensed phase heats of formation. These semiempirical computational methods, calibrated using experimental information, were applied to a series of CHNO molecules for which no experimental information was used in the development of the methods. These methods improve upon an earlier effort of Rice et al. [Rice, B. M.; Pai, S. V.; Hare, J. Combust. Flame 1999, 118, 445] through the use of a larger basis set and the application of group equivalents. The root-mean-square deviation (rms) from experiment for the predicted group-equivalent gas phase heats of formation is 3.2 kcal/mol with a maximum deviation of 6.5 kcal/mol. The rms and maximum deviation of the predicted liquid heats of formation are 3.2 and 7.4 kcal/mol, respectively. Finally, the rms and maximum deviation of predicted solid heats of formation are 5.6 and 12.2 kcal/mol, respectively, an improvement in the rms of approximately 40% compared to the earlier Rice et al. predictions using atom equivalents and a smaller basis set (B3LYP/6-31G*).  相似文献   

12.
We present a model to calculate the free energies of solvation of small organic compounds as well as large biomolecules. This model is based on a generalized Born (GB) model and a self-consistent charge-density functional theory-based tight-binding (SCC-DFTB) method with the nonelectrostatic contributions to the free energy of solvation modeled in terms of solvent-accessible surface areas (SA). The parametrization of the SCC-DFTB/GBSA model has been based on 60 neutral and six ionic molecules composed of H, C, N, O, and S, and spanning a wide range of chemical groups. Effective atomic radii as parameters have been obtained through Monte Carlo Simulated Annealing optimization in the parameter space to minimize the differences between the calculated and experimental free energies of solvation. The standard error in the free energies of solvation calculated by the final model is 1.11 kcal mol(-1). We also calculated the free energies of solvation for these molecules using a conductor-like screening model (COSMO) in combination with different levels of theory (AM1, SCC-DFTB, and B3LYP/6-31G*) and compared the results with SCC-DFTB/GBSA. To assess the efficiency of our model for large biomolecules, we calculated the free energy of solvation for a HIV protease-inhibitor complex containing 3,204 atoms using the SCC-DFTB/GBSA and the SCC-DFTB/COSMO models, separately. The computed relative free energies of solvation are comparable, while the SCC-DFTB/GBSA model is three to four times more efficient, in terms of computational cost.  相似文献   

13.
The heats of formation (HOP) for all the 21 polyisocyanocubanes are calculated systematically with density functional theory (DFT) B3LYP and semiempirical MO(MINDO/3, MNDO, AM1 and PM3) methods. First, the accurate HOFs for the 8 title compounds are obtained by means of designed isodesmic reactions at DFT-B3LYP/6-31G* level, and the cubane cage skeleton has not been broken (i.e. choosing cubane as a reference compound) to produce more accurate and reliable results. It is found that there are good linear relationships between the HOFs calculated using the B3LYP/6-31G* and four semiempirical MO methods, respectively, and all of the linear correlation coefficients are more than 0.9971. The HOFs obtained from PM3 calculation are the best among the four semiempirical MO methods. Then, the accurate HOFs at B3LYP/6-31G* level of other 13 polyisocyanocubanes are obtained by systematically correcting their PM3-calculated HOFs. Polyisocyanocubanes have very high HOFs, and the HOFs increase linearly with the increa  相似文献   

14.
The heats of formation (HOF) for all the 21 polyisocyanocubanes are calculated systematically with density functional theory (DFT) B3LYP and semiempirical MO(MINDO/3, MNDO, AM1 and PM3) methods. First, the accurate HOFs for the 8 title compounds are obtained by means of designed isodesmic reactions at DFT-B3LYP/6-31G* level, and the cubane cage skeleton has not been broken (i.e. choosing cubane as a reference compound) to produce more accurate and reliable results. It is found that there are good linear relationships between the HOFs calculated using the B3LYP/6-31G* and four semiempirical MO methods, respectively, and all of the linear correlation coefficients are more than 0.9971. The HOFs obtained from PM3 calculation are the best among the four semiempirical MO methods. Then, the accurate HOFs at B3LYP/6-31G* level of other 13 polyisocyanocubanes are obtained by systematically correcting their PM3-calculated HOFs. Polyisocyanocubanes have very high HOFs, and the HOFs increase linearly with the increasing of the number of isocyano groups in a molecule. The results show that polyisocyanocubanes are the new generation explosives with highly potential and exploitable value.  相似文献   

15.
The G3/99 test set [L. A. Curtiss, K. Raghavachari, P. C. Redfern, and J. A. Pople, J. Chem. Phys. 112, 7374 (2000)] of thermochemical data for validation of quantum chemical methods is expanded to include 78 additional energies including 14 enthalpies of formation of the first- and second-row nonhydrogen molecules, 58 energies of molecules containing the third-row elements K, Ca, and Ga-Kr, and 6 hydrogen-bonded complexes. The criterion used for selecting the additional systems is the same as before, i.e., experimental uncertainties less than +/- 1 kcal/mol. This new set, referred to as the G3/05 test set, has a total of 454 energies. The G3 and G3X theories are found to have mean absolute deviations of 1.13 and 1.01 kcal/mol, respectively, when applied to the G3/05 test set. Both methods have larger errors for the nonhydrogen subset of 79 species for which they have mean absolute deviations of 2.10 and 1.64 kcal/mol, respectively. On all of the other types of energies the G3 and G3X methods are very reliable. The G3/05 test set is also used to assess density-functional methods including a series of new functionals. The most accurate functional for the G3/05 test set is B98 with a mean absolute deviation of 3.33 kcal/mol, compared to 4.14 kcal/mol for B3LYP. The latter functional has especially large errors for larger molecules with a mean absolute deviation of 9 kcal/mol for molecules having 28 or more valence electrons. For smaller molecules B3LYP does as well or better than B98 and the other functionals. It is found that many of the density-functional methods have significant errors for the larger molecules in the test set.  相似文献   

16.
Recent studies have shown that semiempirical methods (e.g., PM3 and AM1) for zinc-containing compounds are unreliable for modeling structures containing zinc ions with ligand environments similar to those observed in zinc metalloenzymes. To correct these deficiencies a reparameterization of zinc at the PM3 level was undertaken. In this effort we included frequency corrected B3LYP/6-311G* zinc metalloenzyme ligand environments along with previously utilized experimental data. Average errors for the heats of formation have been reduced from 46.9 kcal/mol (PM3) to 14.2 kcal/mol for this new parameter set, termed ZnB for "Zinc, Biological." In addition, the new parameter sets predict geometries for the Bacillus fragilis active site model and other zinc metalloenzyme mimics that are qualitatively in agreement with high-level ab initio results, something existing parameter sets failed to do.  相似文献   

17.
多氰基立方烷生成热的DFT-B3LYP和半经验MO研究   总被引:5,自引:1,他引:4  
张骥  肖鹤鸣  肖继军  贡雪东 《化学学报》2001,59(8):1230-1235
运用密度泛函理论(DFT)B3LYP方法和半经验MO(MINDO/3,MNDO,AM1和PM3)方法系统计算了全部21种多氰基立方烷的生成热,首先,在DFT-B3LYP/6-31G^*水平下通过不破裂立方烷笼状骨架(亦即选择立方烷为参考物)的等键反应设计,精确计算了9种多氰基立方烷的生成热;发现B3LYP/6-31G^*结果分别地均与上述四种半经验MO方法求得的生成热之间存在良好的线性关系(相关系数均在0.9994以上),且以AM1生成热与B3LYP/6-31G^*计算值最为接近,其次,其它12种多氰基立方烷的精确生成热借助上述线性关系通过校正对应的AM1结果而获得,多氰基立方烷的生成热很高,且随-CN基数目的增加而线性地增大,表明它们属于极具潜力的“新一低高能炸药”而具开发价值。  相似文献   

18.
A quantum Monte Carlo (QMC) benchmark study of heats of formation at 298 K and bond dissociation energies (BDEs) of 22 small hydrocarbons is reported. Diffusion Monte Carlo (DMC) results, obtained using a simple product trial wavefunctions consisting of a single determinant and correlation function, are compared to experiment and to other theory including a version of complete basis set theory (CBS‐Q) and density functional theory (DFT) with the B3LYP functional. For heats of formation, the findings are a mean absolute deviation from experiment of 1.2 kcal/mol for CBS‐Q, 2.0 kcal/mol for B3LYP, and 2.2 kcal/mol for DMC. The mean absolute deviation of 31 BDEs is 2.0 kcal/mol for CBS‐Q, 4.2 kcal/mol for B3LYP, and 2.5 kcal/mol for DMC. These findings are for 17 BDEs of closed‐shell molecules that have mean absolute deviations from experiment of 1.7 kcal/mol (CBS‐Q), 4.0 kcal/mol (B3LYP), and 2.2 kcal/mol (DMC). The corresponding results for the 14 BDEs of open‐shell molecules studied are 2.4 kcal/mol (CBS‐Q), 4.3 kcal/mol (B3LYP), and 2.9 kcal/mol (DMC). The DMC results provide a baseline from which improvement using multideterminant trial functions can be measured. © 2005 Wiley Periodicals, Inc. Int J Chem Kinet 37: 583–592, 2005  相似文献   

19.
The heats of formation (HOFs) were calculated for a series of polydifluoroaminocubanes by using density functional theory (DFT), Hartree-Fock, and MP2 method with 6-31G basis set as well as semiempirical methods. The cubane skeleton was not broken in the process of designing isodesmic reactions; i.e., the cubane skeleton was chosen for a reference compound. The contribution of difluoroamino group to the heat of formation deviates from group additivity. The semiempirical MO (MNDO, AM1, and PM3) methods did not produce accurate and reliable results for the HOFs of the title compounds. The relationship between HOFs and molecular structures was discussed. It was found that the HOFs decreased dramatically initially and then gradually with each difluoroamino group attached to the cubane skeleton. The distance between difluoroamino groups influences the values of HOFs. The interacting energies of polydifluoroaminocubanes are in the range 14-20 kJ/mol. The interaction of neighbor difluoroamino groups discords with the group additivity. The average interaction energy between the nearest-neighbor NF(2) group in the most stable conformer of octadifluoroaminocubane is 13.94 kJ/mol at the B3LYP/6-31G level. The NF(2) group can rotate freely around the C-N bond. The relative stability of the title compounds was accessed on the basis of the calculated HOFs, the energy gaps between the frontier orbitals, and the bond order of C-NF(2). These results provide basic information for the molecular design of novel high energetic density materials.  相似文献   

20.
Thermochemical data calculated using ab initio molecular orbital theory are reported for 16 BxNxHy compounds with x = 2, 3 and y > or = 2x. Accurate gas-phase heats of formation were obtained using coupled cluster with single and double excitations and perturbative triples (CCSD(T)) valence electron calculations extrapolated to the complete basis set (CBS) limit with additional corrections including core/valence, scalar relativistic, and spin-orbit corrections to predict the atomization energies and scaled harmonic frequencies to correct for zero point and thermal energies and estimate entropies. Computationally cheaper calculations were also performed using the G3MP2 and G3B3 variants of the Gaussian 03 method, as well as density functional theory (DFT) using the B3LYP functional. The G3MP2 heats of formation are too positive by up to approximately 6 kcal/mol as compared with CCSD(T)/CBS values. The more expensive G3B3 method predicts heats of formation that are too negative as compared with the CCSD(T)/CBS values by up to 3-4 kcal/mol. DFT using the B3LYP functional and 6-311+G** basis set predict isodesmic reaction energies to within a few kcal/mol compared with the CCSD(T)/CBS method so isodesmic reactions involving BN compounds and the analogous hydrocarbons can be used to estimate heats of formation. Heats of formation of c-B3N3H12 and c-B3N3H6 are -95.5 and -115.5 kcal/mol at 298 K, respectively, using our best calculated CCSD(T)/CBS approach. The experimental value for c-B3N3H6 appears to be approximately 7 kcal/mol too negative. Enthalpies, entropies, and free energies are calculated for many dehydrocoupling and dehydrogenation reactions that convert BNH6 to alicyclic and cyclic oligomers and H2(g). Generally, the reactions are highly exothermic and exergonic as well because of the release of 1 or more equivalents of H2(g). For c-B3N3H12 and c-B3N3H6, available experimental data for sublimation and vaporization lead to estimates of their condensed phase 298 K heats of formation: DeltaHf degrees [c-B3N3H12(s)] = -124 kcal/mol and DeltaHf degrees [c-B3N3H6(l)] = -123 kcal/mol. The reaction thermochemistries for the dehydrocoupling of BNH6(s) to c-B3N3H12(s) and the dehydrogenation of c-B3N3H12(s) to c-B3N3H6(l) are much less exothermic compared with the gas-phase reactions due to intermolecular forces which decrease in the order BNH6 > cyclo-B3N3H12 > cyclo-B3N3H6. The condensed phase reaction free energies are less negative compared with the gas-phase reactions but are still too favorable for BNH6 to be regenerated from either c-B3N3H12 or c-B3N3H6 by just an overpressure of H2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号