首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A theory is constructed for the long-range exchange and retarding interactions between an electron and a hole in a quantum well. A method is developed that makes it possible to calculate the ground and excited states of an exciton localized as a whole on a width fluctuation of a quantum well in the form of a rectangular island. It is shown that taking into account the electron-hole interaction mechanisms considered here causes the radiation doublet of the exciton to split into two components polarized along the sides of the rectangle. The dependence of the magnitude and sign of this splitting on the linear dimensions of the island and the level number of the localized exciton are analyzed. Zh. éksp. Teor. Fiz. 113, 703–714 (February 1998)  相似文献   

2.
Time-resolved picosecond spectroscopy is used for the first time to study optical orientation and spin dynamics of carriers in self-organized In(Ga)As/GaAs quantum-dot (QD) arrays. Optical orientation of carriers created by 1.2 ps light pulses, both in the GaAs matrix and wetting layer, and captured by QDs is found to last a few hundreds of picosecond. The saturation of electron ground state at high-excitation-light intensity leads to electron polarization in excited states close to 100% and to its vanishing in ground state. Electron-spin quantum beats in a transverse magnetic field are observed for the first time in semiconductor QDs. We thus determine the quasi-zero-dimensional electron g factor in In0.5Ga0.5As/GaAs QDs to be: |g |=0.27±0.03. Fiz. Tverd. Tela (St. Petersburg) 41, 871–874 (May 1999) Published in English in the original Russian journal. Reproduced here with stylistic changes by the Translation Editor.  相似文献   

3.
The measured stationary and time-resolved photoluminescence is used to study the properties of the exciton gas in a second-order 5-nm-thick Si0.905Ge0.095/Si quantum well. It is shown that, despite the presence of an electron barrier in the Si0.905Ge0.095 layer, a spatially indirect biexciton is the most favorable energy state of the electron–hole system at low temperatures. This biexciton is characterized by a lifetime of 1100 ns and a binding energy of 2.0–2.5 meV and consists of two holes localized in the SiGe layer and two electrons mainly localized in silicon. The formation of biexcitons is shown to cause low-temperature (5 K) luminescence spectra over a wide excitation density range and to suppress the formation of an exciton gas, in which quantum statistics effects are significant. The Bose statistics can only be experimentally observed for a biexciton gas at a temperature of 1 K or below because of the high degree of degeneracy of biexciton states (28) and a comparatively large effective mass (about 1.3m e ). The heat energy at such temperatures is much lower than the measured energy of localization at potential fluctuations (about 1 meV). This feature leads to biexciton localization and fundamentally limits the possibility of observation of quantum coherence in the biexciton gas.  相似文献   

4.
The luminescence method has been employed for the first time to detect nonequilibrium phonons in CdTe quantum wells with Cd0.6Mn0.4Te barriers. The method makes use of the giant Zeeman splitting of exciton states in CdTe/(Cd,Mn)Te quantum wells and is promising for application in high-sensitivity subterahertz phonon spectrometry. The method can also be useful in revealing the spin-phonon coupling mechanisms in diluted magnetic semiconductors. Fiz. Tverd. Tela (St. Petersburg) 40, 816–819 (May 1998)  相似文献   

5.
The propagation of exciton polaritons in an optical waveguide with a quantum well is studied. Spatial dispersion of the excitons causes the wave vector of the exciton polaritons to split between waveguide and exciton modes at resonance. The magnitude of this splitting is determined by the radiative decay parameter of excitons with corresponding polarization in the quantum well. The group velocity of the waveguide exciton polaritons in the resonance region can be three or four orders of magnitude lower than the speed of light in vacuum. Fiz. Tverd. Tela (St. Petersburg) 40, 362–365 (February 1998)  相似文献   

6.
ABSTRACT

Multiple exciton generation (MEG) in nanometer-sized hydrogen-passivated silicon nanowires (NWs), and quasi two-dimensional nanofilms depends strongly on the degree of the core structural disorder as shown by the perturbative many-body quantum mechanics calculations based on the density functional theory simulations. Working to the second order in the electron–photon coupling and in the screened Coulomb interaction, we calculate quantum efficiency (QE), the average number of excitons created by a single absorbed photon, in the Si29H36 quantum dots (QDs) with crystalline and amorphous core structures, simple cubic three-dimensional arrays constructed from these QDs, crystalline and amorphous NWs, and quasi two-dimensional silicon nanofilms, also both crystalline and amorphous. Efficient MEG with QE ranging from 1.3 up to 1.8 at the photon energy of about 3Eg, where Eg is the electronic gap, is predicted in these nanoparticles except for the crystalline NW and crystalline film where QE ? 1. MEG in the amorphous nanoparticles is enhanced by the electron localisation due to structural disorder. Combined with the lower gaps, the nanometer-sized amorphous silicon NWs and films are predicted to have effective carrier multiplication within the solar spectrum range.  相似文献   

7.
We investigate coherent exciton transitions in GaAs/Al x Ga1–x As quantum wells using subpicosecond four-wave-mixing spectroscopy. In a first part, we show that the four-wave-mixing lineshape deviates considerably from earlier predictions when the detailed structure of the excitons is taken into account, and we study the density dependence and excitation energy dependence in detail. In a second part, we discuss the observation of quantum beats due to the coherent superposition of different excitonic transitions and show how the analysis of the lineshape can yield information about relaxation processes.Dedicated to H.-J. Queisser on the occasion of his 60th birthday  相似文献   

8.
We present the results of optical, steady-state and time-resolved studies of photoluminescence and photoluminescence excitation in high-quality Al0.3Ga0.7As/GaAs quantum wells in which the presence of large (larger than the exciton radius) atomically flat islands can be inferred, identical to the case of interrupted MBE growth. Migration of excitons towards lower-lying energy states induced by local potential fluctuations and/or progressive localisation has been revealed and the transition rate between quantum well regions 24 to 25 monolayers thick has been derived to be 290 ps−1.  相似文献   

9.
When a voltage is applied to double quantum wells based on AlGaAs/GaAs heterostructures with contact regions (n-i-n structures), a two-dimensional (2D) electron gas appears in one of the quantum wells. Under illumination which generates electron-hole pairs, the photoexcited holes become localized in a neighboring quantum well and recombine radiatively with the 2D electrons (tunneling recombination through the barrier). The appearance, ground-state energy, and density of the degenerate 2D electron gas are determined from the structure of the Landau levels in the luminescence and luminescence excitation spectra as well as from the oscillations of the radiative recombination intensity in a magnetic field with detection directly at the Fermi level. The electron density is regulated by the voltage between the contact regions and increases with the slope of the bands. For a fixed slope of the bands the 2D-electron density has an upper limit determined by the resonance tunneling of electrons into a neighboring quantum well and subsequent direct recombination with photoexcited holes. Pis’ma Zh. éksp. Teor. Fiz. 65, No. 11, 840–845 (10 June 1997)  相似文献   

10.
11.
A variational-perturbative method is used to calculate the binding energy of an exciton in quantum well structure of AlxGa1-xAs-GaAs-AlxGa1-xAs. The fitness of potential well heights and differences of electron or hole effective mass in barrier region are both taken into considerations. The binding energies as a function of GaAs well sizes and as a function of alloy compositions, and a photon energy emitted in the recombination of an exciton, are presented. Validity of the calculation is discussed.  相似文献   

12.
The possibility of magnetic field control of the spectral and polarization characteristics of exciton recombination is examined in Cd(Mg, Mn) Te-based asymmetric double quantum wells. At low fields, the exciton transition in a semimagnetic well is higher in energy than that in a nonmagnetic well and the interwell exciton relaxation is fast. In contrast, when the energy order of the exciton transitions reverses at high fields, unexpectedly slow relaxation of σ polarized excitons from the nonmagnetic well to the σ+-polarized ground state in the semimagnetic well is observed. Strong dependence of the total circular polarization degree on the heavy-light hole splitting Δ hh-lh in the nonmagnetic well is found and attributed to the spin dependent interwell tunneling controlled by exciton spin relaxation. Such a slowing down of the relaxation allows separation of oppositely spin-polarized excitons in adjacent wells. The text was submitted by the authors in English.  相似文献   

13.
Combined polaron states in a rectangular quantum well in a strong magnetic field perpendicular to the well plane are discussed. These states are due to interaction between two discrete electron levels with different Landau quantum numbers (n and n 1) and different size-quantization quantum numbers (m and m 1) on the one hand and a confined LO phonon on the other under conditions of low temperature when the energy difference between the electronic levelsis equal or close to the energy of the confined LO phonon. The expression for the resonant magnetic field H res at which a combined polaron is formed contains the energy difference between size-quantized levels, so it is a function of quantum well parameters. The separation ΔE res between branches in the energy spectrum of a combined polaron and H res has been calculated as a function of the quantum well width d. The resonant field H res can be reduced dramatically in comparison with the case m=m 1. The case of size-quantization with n=n 1 has been analyzed. The energy difference ΔE res is in the range (1–5)· 10−3 eV. The damping of combined polaron states due to the effect of anharmonicity on the LO phonon has been studied. Interband absorption and features in the reflection spectrum due to interband transitions have been calculated for an arbitrary ratio between the radiative and “phonon” lifetime of a combined polaron have been investigated. Zh. éksp. Teor. Fiz. 116, 1419–1439 (October 1999)  相似文献   

14.
The nature of the few particle wavefunctions for neutral and positively charged excitons is probed in individual InGaAs quantum dots using Stark-effect perturbation spectroscopy. A systematic reduction of the vertical component of the permanent excitonic dipole (pz) is observed as additional holes are added to the dot. A comparison with calculations reveals that this reduction (Δpz/e15–20%) is accompanied by a significant lateral expansion of the hole (2 nm) and contraction (1 nm) of the electron wavefunctions. We suggest that this lateral redistribution of the charged exciton wavefunctions provides an optical means to probe the lateral composition profile of the dot.  相似文献   

15.
We present a computer simulation of exciton–exciton scattering in a quantum well. Specifically, we use quantum Monte Carlo techniques to study the bound and continuum states of two excitons in a 10 nm wide GaAs/Al0.3Ga0.7As quantum well. From these bound and continuum states we extract the momentum-dependent phase shifts for s-wave scattering. A surprising finding of this work is that a commonly studied effective-mass model for excitons in a 10 nm quantum well actually supports two bound biexciton states. The second, weakly bound state may dramatically enhance exciton–exciton interactions. We also fit our results to a hard-disk model and indicate directions for future work.  相似文献   

16.
Recent experimental work on the quantized Hall state at total filling factor νT=1 in bilayer 2D electron systems has revealed a number of striking phenomena, including a giant and sharply resonant enhancement of the interlayer tunneling conductance at zero bias. The tunneling enhancement is a compelling indicator of spontaneous interlayer phase coherence among the electrons in the system. Such phase coherence is perhaps the single most important attribute of the excitonic Bose condensate which describes this remarkable quantum Hall state.  相似文献   

17.
The optical spectra of the CdTe/Cd0.7Mn0.3Te structure containing three CdTe quantum wells with nominal thicknesses of 16, 8, and 4 monolayers have been investigated. The temperature dependences of parameters of the exciton luminescence spectra (integrated intensity, full-width at half-maximum, position of the maximum, Stokes shift) for quantum wells with different thicknesses differ substantially. These differences are explained by a strong thickness dependence of the energy of Coulomb coupling in the exciton, the energy of localization of the exciton on bulges of the quantum well, and the degree of penetration of the exciton wave function into the barrier. At high excitation power densities, the emission contours of the quantum wells with thicknesses of 8 and 16 monolayers contain short-wavelength tails that correspond to optical transitions between excited quantum-well levels.  相似文献   

18.
The tunability of the emission energy, oscillator strength and photoluminescence (PL) efficiency by varying the well thickness and excitation density was demonstrated in the ZnSe0.8Te0.2/ZnSe multiple quantum wells. A significant blueshift about 260 meV of the PL peak energy was observed as the well width decreased from 5 to 1 nm. An extraordinary long lifetime (300 ns) of the recombination for the widest sample was detected. The binding energy of the indirect excitons is determined as 12 meV for the thinnest sample. The reduction of PL efficiency by thermal energy is greatly suppressed by employing a high excitation power.  相似文献   

19.
Semiconductor nanostructures have attracted considerable interest during the recent years in view of the potential application in quantum information processing. In particular, quantum dots have been suggested to fulfill an essential requirement for quantum computation: controllable interaction that couples two quantum dot qubits. Previous experiments on two vertically aligned quantum dots have demonstrated the formation of coupled exciton states. We show that this coupling between two In0.60Ga0.40As/GaAs quantum dots can be tuned by an electric field applied along the molecule axis. This controllable coupling in such a relatively simple configuration could be implemented in a solid-state-based quantum device.  相似文献   

20.
Polaron effects on excitons in parabolic quantum wells are studied theoretically by using a variational approach with the so-called fractional dimension model. The numerical results for the exciton binding energies and longitudinal-optical phonon contributions in GaAs/Al0.3Ga0.7As parabolic quantum well structures are obtained as functions of the well width. It is shown that the exciton binding energies are obviously reduced by the electron (hole)-phonon interaction and the polaron effects are un-negligible. The results demonstrate that the fractional-dimension variational theory is effectual in the investigations of excitonic polaron problems in parabolic quantum wells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号