首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Temperature and concentration measurements by Coherent Anti-Stokes Raman Scattering (CARS) of molecular nitrogen, oxygen and methane were carried out. A comparison of corrected thermocouple and CARS temperature measurements in a high-temperature furnace up to 2000 K is presented. The temperature dependent CARS spectra of N2 and O2 are evaluated by a simulation program. Agreement between CARS and thermocouple temperatures is obtained within 40 K for N2 and 80 K for O2. Good agreement is found between measurements and calculations of the decrease of CARS intensity with temperature. Various quick-fit methods for N2-and O2-temperature measurements from temperature sensitive spectral parameters were tested. Temperature dependent CARS spectra of thev 1-fundamental of methane are recorded and the methane CARS intensity as function of temperature is measured.  相似文献   

2.
Rotational coherent anti‐Stokes Raman spectroscopy (CARS) in fuel‐rich hydrocarbon flames, with a large content of hydrogen in the product gases (∼20%), has in previous work shown that evaluated temperatures are raised several tens of Kelvin by taking newly derived N2 H2 Raman line widths into account. To validate these results, in this work calibrated temperature measurements at around 300, 500 and 700 K were performed in a cell with binary gas mixtures of nitrogen and hydrogen. The temperature evaluation was made with respect to Raman line widths either from self‐broadened nitrogen only, N2 N2 [energy‐corrected‐sudden (ECS)], or by also taking nitrogen broadened by hydrogen, N2 H2 [Robert–Bonamy (RB)], Raman line widths into account. With increased amount of hydrogen in the cell at constant temperature, the evaluated CARS temperatures were clearly lowered with the use of Raman line widths from self‐broadened nitrogen only, and the case with inclusion of N2 H2 Raman line widths was more successful. The difference in evaluated temperatures between the two different sets increases approximately linearly, reaching 20 K (at T ∼ 300 K), 43 K (at T = 500 K) and 61 K (at T = 700 K) at the highest hydrogen concentration (90%). The results from this work further emphasize the importance of using adequate Raman line widths for accurate rotational CARS thermometry. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
Rotational coherent anti-Stokes Raman spectroscopy (CARS) has over the years demonstrated its strong potential to measure temperature and relative concentrations of major species in combustion. A recent work is the development and experimental validation of a CO2 model for thermometry, in addition to our previous rotational CARS models for other molecules. In the present work, additional calibration measurements for relative CO2/N2 concentrations have been made in the temperature range 294-1246 K in standardized CO2/N2 mixtures. Following these calibration measurements, rotational CARS measurements were performed in a laminar CO/air diffusion flame stabilized on a Wolfhard-Parker burner. High-quality spectra were recorded from the fuel-rich region to the surrounding hot air in a lateral cross section of the flame. The spectra were evaluated to obtain simultaneous profiles of temperature and concentrations of all major species; N2, O2, CO, and CO2. The potential for rotational CARS as a multi-species detection technique is discussed in relation to corresponding strategies for vibrational CARS.  相似文献   

4.
Summary CARS (Coherent Anti-Stokes Raman Scattering) has developed into a powerful tool for studying molecular systems. One of its possibilities is to derive vibrational and rotational temperatures as well as concentrations of molecules from measurements of the energy level population differences. A very good spatial resolution of CARS technique is one of its important advantages. This feature has been utilized for making spatially resolved measurements of the vibrational and rotational temperatures of N2 in a d.c.-excited transverse-flow CO2 laser discharge. Apart from that also spectra of CO2, CO and O2 in the discharge have been taken, which allowed us to evaluate the spatial distributions of those components in the discharge. Additionally first investigations of a microwave-excited CO2 laser module have been performed for comparison. Paper presented at the ?XI European CARS Workshop?, Florence, Italy, 23–25 March, 1992.  相似文献   

5.
This work describes a further step towards the determination of the temperature accuracy of H2 Q-branch CARS (Coherent Anti-Stokes Raman Scattering) at high pressure with regard to the influence of the H2 line widths. In laminar steady H2/air flames in the pressure range 1–15 bar and at fuel-rich conditions with stoichiometries between two and four, quasi-simultaneous temperature measurements were performed with H2 and N2 CARS. The temperature values deduced from H2 CARS are in good agreement with the reference temperature from N2 CARS. The influence of different line-width contributions on the accuracy of H2 Q-branch thermometry was investigated in detail. Received: 10 April 2001 / Revised version: 22 May 2001 / Published online: 18 July 2001  相似文献   

6.
The determination of accurate temperatures from CARS N2 Q-branch spectra in premixed flames is discussed for pressures up to 40 bar. The influence of collisional line narrowing in the CARS spectra is modelled by a MEG fitting law. It takes into account collisions of N2 with CO2 and H2O. The analysis of the CARS data showed that the non-resonant background has an increasing influence on temperature with increasing pressure. Little influence on the quality of the fit between theory and experiment was found. Since there is a danger of residual systematic temperature deviations, which cannot be identified from the quality of the fit, spontaneous rotational Raman scattering is employed as an independent measuring technique.  相似文献   

7.
This paper reviews the various physico-chemical processes responsible for actual linewidths encountered in high-resolution coherent anti-Stokes Raman spectroscopy (CARS). Most of the experimental data are based on linewidth measurements using a pulseamplified CARS spectrometer with an emission bandwidth (FWHM) of 2×10–3 cm–1. Detailed rotational and vibrational relaxation constants have been obtained from the analysis of theQ-branch profiles of C2H2, N2, CH4, and SiH4.  相似文献   

8.
Time-resolved dual-broadband picosecond pure rotational CARS has been applied to measure self-broadened S-branch N2–N2 Raman linewidths in the temperature range 294–1466 K. The coherence decays were detected directly in the time domain by following the J-dependent CARS signal decay as a function of probe delay. The rotational Raman N2–N2 linewidths were derived from these time-dependent decays and evaluated for thermometric accuracy. Comparisons were made to the energy-corrected sudden (ECS) and modified exponential gap (MEG) dynamical scaling laws, and the results were used to quantify the sensitivity of nanosecond rotational CARS thermometry to the linewidth model employed. The uncertainty based on the linewidth model used in pure N2 was found to be 2 %. The merits and limitations of this rapid method for the determination of accurate Raman linewidths are discussed.  相似文献   

9.
Coherent anti‐Stokes Raman scattering (CARS) spectroscopy has been used to investigate cryogenic liquid oxygen/gaseous methane (LOX/CH4) flames on a medium‐size test facility at a pressure of 0.24 MPa and mass flow of 0.025 kg/s. Single‐shot, broadband CARS spectra with simultaneous detection of the Q‐branches of hydrogen and water molecules were recorded with good signal‐to‐noise ratio. Temperature was deduced from the H2 and H2O CARS profiles. The spatial temperature distribution in a comparatively harsh environment has been measured successfully. The measurements took place in the windowed combustion chamber of the DLR M3 test facility, aiming to provide data for validation of rocket combustor modeling. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
O2 temperature measurements at T=1910K have been performed by coherent anti-Stokes Raman scattering (CARS) inside a homogeneously heated gas volume of a tube furnace. The oxygen CARS spectrum can now be modeled accurately within the higher vibrational levels of the Q-branch manifold populated at flame temperatures using recently available spectroscopic data and collisional broadening coefficients.  相似文献   

11.
Temperature profiles in several premixed low pressure H2/O2/N2 flames and in an atmospheric pressure CH4/air flame were determined by laser-induced fluorescence (LIF) and by CARS experiments. In the LIF study, temperatures were derived from OH excitation spectra, CARS temperatures were deduced from N2 Q-branch spectra. The present study is the first quantitative comparison of these two methods for temperature determination in flames burning at pressures up to 1 bar. The resulting temperatures showed good agreement.  相似文献   

12.
An experimental setup for gas-temperature diagnostics using Coherent Anti-Stokes Raman Scattering (CARS) in very small sample volumes with great spatial and temporal temperature variations is presented. Studies have been started of a newly designed transversely heated graphite-tube atomizer for atomic absorption spectrometry (Perkin-Elmer, 4100 ZL). For the investigations, high spatial resolution and precise time synchronization of the measurements and also automatic control of the time-dependent intensity of the anti-Stokes signal were realized. The graphite-tube atomizer also offers the possibility of high-temperature-gas spectroscopy. A high-temperature CARS spectrum of CO2, recorded in the graphite tube at 2300 K, is shown for the first time. A number of hot-band transitions in the spectral region of the Fermi doublet at a Raman shift from 1230 to 1450cm–1 was observed and assigned, making possible the use of CO2 as spectroscopic thermometer gas, similar to N2.  相似文献   

13.
N2-temperature measurements have been performed by coherent anti-stokes Raman scattering (CARS) up to more than 3200 K using a commercial heated graphite tube furnace. Surface radiation pyrometry served as the reference technique yielding good agreement between pyrometric and CARS-based temperature determination, resulting in an overall temperature uncertainty of ±80 K for a spectrum obtained at 1 bar and 3230 K.  相似文献   

14.
To establish H2 CARS thermometry at high pressure, accumulated H2 Q-branch CARS spectra were recorded in the exhaust of a fuel-rich CH4/air flame at pressures between 5 and 40 bar. Temperatures were deduced by fitting theoretical spectra to experimental data points. The Energy-Corrected Sudden (ECS) scaling law was employed to set up an empirical model for the calculation of H2 linewidths in high-pressure hydrocarbon flames with H2 as a minority species. Experimental H2 CARS spectra could be simulated very accurately with this model. The evaluated temperatures agreed well with reference temperatures obtained by spontaneous rotational Raman scattering of N2.  相似文献   

15.
Coherent anti‐Stokes Raman scattering (CARS) spectroscopy of gas‐phase CO2 is demonstrated using a single femtosecond (fs) laser beam. A shaped ultrashort laser pulse with a transform‐limited temporal width of ∼7 fs and spectral bandwidth of ∼225 nm (∼3500 cm−1) is employed for simultaneous excitation of the CO2 Fermi dyads at ∼1285 and ∼1388 cm−1. CARS signal intensities for the two Raman transitions and their ratio as a function of pressure are presented. The signal‐to‐noise ratio of the single beam–generated CO2 CARS signal is sufficient to perform concentration measurements at a rate of 1 kHz. The implications of these experiments for measuring CO2 concentrations and rapid pressure fluctuations in hypersonic and detonation‐based chemically reacting flows are also discussed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Spontaneous Raman spectroscopy has been employed for time-averaged, spatially-resolved measurements of temperature and species concentration in an axisymmetric, laminar hydrogen diffusion flame in quiescent air. Temperatures were obtained from vibrational Q-branch raman spectra of N2, O2, and H2 and the rotational Raman spectra of N2 and H2, and concentrations of H2, and N2 were determined. The results are compared to existing numerical nonequilibrium calculations for the conditions of this experiment. Significant differences between experimental and predicted temperature and concentration profiles are observed. In particular, the flame is larger in both diameter and length and the flame zone is thicker than predicted. Some possible sources of the discrepancies are discussed.  相似文献   

17.
The rotational temperature behaviour in adiabatic jet expansion of molecular nitrogen is investigated over a wide range of stagnation density and nozzle diameter values using coherent anti-Stokes Raman spectroscopy (CARS). Estimates of rotational collisional numbers are made for both (N2+N2) and (N2+Ar) systems. The aspect of cluster formation for both systems is also discussed.  相似文献   

18.
The coherent anti‐Stokes Raman spectroscopy (CARS) technique is often used in the study of turbulent flames. Fast and accurate algorithms are needed for fitting CARS spectra for temperature and multiple chemical species. This paper describes the development of such an algorithm. The algorithm employs sparse libraries whose size grows more slowly with number of species than a regular library. It was demonstrated by fitting synthetic ‘experimental’ dual‐pump CARS spectra containing four resonant species (N2, O2, H2 and CO2), both with added noise and without it, and by fitting experimental spectra from a H2 air flat flame produced by a Hencken burner. In the four‐species example, the library was nearly an order of magnitude smaller than the equivalent regular library (fitting times are correspondingly faster), and the fitting errors in the absence of added noise were negligible compared to the random errors associated with fitting noisy spectra. When fitting noisy spectra, weighted least squares fitting to signal intensity, as opposed to least squares fitting or least squares fitting to square root of intensity, minimized random and bias errors in fit parameters. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
Coherent anti-Stokes Raman spectroscopy (CARS) was used to measure the vibrational temperature of microwave-excited nitrogen in a N2–CO–He mixture. CARS spectra, originating from the N2-vibrational levelsv=0 up tov=3, have been recorded by both narrowband scanning of the resonance region as well as by broadband OSA detection. For the microwave-excited N2 molecules a vibrational temperatureT v (N 2 = (2130±110K) and a lower limit of detection forN 2(v = 3) = 1.2 x 1015 cm–3 was established. The CARS results were independently confirmed by simultaneously recorded and spectrally resolved CO infrared fluorescence studies.  相似文献   

20.
An approach to CARS, with considerable potential as a diagnostic for advanced airbreathing propulsion devices, is described and demonstrated. The technique is capable of providing simultaneous measurements of the major constitutents in H2/air combustion. The method employs both broadband and narrowband Stokes beams to generate CARS via two, two-color and two, three-color wave mixing processes. Temperature and concentration information are simultaneously available from N2, H2, and H2O. This permits the disappearance of fuel and appearance of product to be monitored. An analysis of the technique's capabilities and future improvements are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号