首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pyrolysis and oxidation of isobutene were studied behind reflected shock waves in the temperature range 1000-1800 K at total pressures between 1.0 and 2.7 atm. The study was carried out using following method: (1) a single-pulse technique for product yields, (2) time-resolved IR-laser absorption at 3.39 μm for isobutene decay and formation rates of compounds which contain C-H bond, (3) time-resolved IR emission at 4.24 μm for CO2 formation rate, and (4) time-resolved UV absorption at 306.7 nm for OH radical formation rate. The pyrolysis and oxidation of isobutene were modeled using a reaction mechanism including the sub-mechanisms for methane, acetylene, ethylene, ethane, formaldehyde, allene, propyne, propene, and ketene oxidation. The reaction mechanism used in the present study could reproduce all experimental results.  相似文献   

2.
Pyrolysis and oxidation of ethyl methyl ether (EME) were studied behind reflected shock waves in the temperature range 900-1750 K at total pressures between 0.9 and 3.1 atm. The study was carried out using following methods, (1) time-resolved IR-laser absorption at 3.39 μm for EME decay and CH-compound formation rates, (2) time-resolved UV absorption at 216 nm for mainly CH3 radical formation rate, (3) time-resolved UV absorption at 306.7 nm for OH radical formation rate, (4) time-resolved IR emission at 4.24 μm for CO2 formation rate and (5) a single-pulse technique for product yields. The pyrolysis and oxidation of EME were modeled using a reaction mechanism including the sub-mechanisms for methane, acetylene, ethylene, ethane, formaldehyde, acetaldehyde and ketene oxidation. The reaction mechanism used in this study could reproduce almost all of experimental results. The sub-mechanisms of methane, ethylene, ethane, formaldehyde, and acetaldehyde were found to play an important role in EME oxidation.  相似文献   

3.
The effects of pressure on soot formation and the structure of the temperature field were studied in co-flow methane-air laminar diffusion flames over a wide pressure range, from 10 to 60 atm in a high-pressure combustion chamber. The selected fuel mass flow rate provided diffusion flames in which the soot was completely oxidized within the visible flame envelope and the flame was stable at all pressures considered. The spatially resolved soot volume fraction and soot temperature were measured by spectral soot emission as a function of pressure. The visible (luminous) flame height remained almost unchanged from 10 to 100 atm. Peak soot concentrations showed a strong dependence on pressure at relatively lower pressures; but this dependence got weaker as the pressure is increased. The maximum conversion of the fuel’s carbon to soot, 12.6%, was observed at 60 atm at approximately the mid-height of the flame. Radial temperature gradients within the flame increased with pressure and decreased with flame height above the burner rim. Higher radial temperature gradients near the burner exit at higher pressures mean that the thermal diffusion from the hot regions of the flame towards the flame centerline is enhanced. This leads to higher fuel pyrolysis rates causing accelerated soot nucleation and growth as the pressure increases.  相似文献   

4.
Shock tube experiments and chemical kinetic modeling were performed to further understand the ignition and oxidation kinetics of various methane-propane fuel blends at gas turbine pressures. Ignition delay times were obtained behind reflected shock waves for fuel mixtures consisting of CH4/C3H8 in ratios ranging from 90/10% to 60/40%. Equivalence ratios varied from lean (? = 0.5), through stoichiometric to rich (? = 3.0) at test pressures from 5.3 to 31.4 atm. These pressures and mixtures, in conjunction with test temperatures as low as 1042 K, cover a critical range of conditions relevant to practical turbines where few, if any, CH4/C3H8 prior data existed. A methane/propane oxidation mechanism was prepared to simulate the experimental results. It was found that the reactions involving CH3O˙, CH32, and ?H3 + O2/HO˙2 chemistry were very important in reproducing the correct kinetic behavior.  相似文献   

5.
The high pressure oxidation of dilute CO mixtures doped with 150-200 ppm of H2 has been studied behind reflected shock waves in the UIC high pressure single pulse shock tube. The experiments were performed over the temperature range from 1000 to 1500 K and pressures spanning 21-500 bars for stoichiometric (Φ = 1) and fuel lean (Φ = 0.5) oxidation. Stable species sampled from the shock tube were analyzed by standard GC, GC/MS techniques. The experimental data obtained in this work were simulated using a detailed model for H2/CO combustion that was validated against a variety of experimental observables/targets that span a wide range of conditions. These simulations have shown that within experimental error the model is able to capture the experimental trends for the lower pressure data sets (average nominal pressures of 24 and 43 bars). However the model under predicts the CO and O2 decay and subsequent CO2 formation for the higher pressure data sets (average nominal pressures of 256 and 450 bars). The current elevated pressure data sets span a previously unmapped regime and have served to probe HO2 radical reactions which appear to be among the most sensitive reactions in the model under these conditions. With updated rate parameters for a key HO2 radical reaction OH + HO2 = H2O + O2, the model is able to reconcile the elevated pressure data sets thereby extending its capability to an extreme range of conditions.  相似文献   

6.
7.
Pyrolysis experiments on n-heptane, 1-heptene and 1,6-heptadiene have been performed using the UIC High-Pressure Shock Tube (HPST) at pressures relevant to diesel combustion systems. The experimental pressures for these experiments ranged from 25 to 50 atm and temperatures varied from 1000 to 1350 K with reaction times ranging from 1 to 3 ms. Dilute reagent mixtures ∼100 ppm were prepared in bulk argon and shock heated to study the stable intermediates. The experimental data has been used to develop and validate an updated kinetic model for the pyrolysis of saturated and unsaturated C7 hydrocarbons. The experimental results and their implication on increased NO emissions from biodiesel blends will also be discussed.  相似文献   

8.
An experimental investigation of the oxidation of hydrogen diluted by nitrogen in presence of CO2 was performed in a fused silica jet-stirred reactor (JSR) over the temperature range 800-1050 K, from fuel-lean to fuel-rich conditions and at atmospheric pressure. The mean residence time was kept constant in the experiments: 120 ms at 1 atm and 250 ms at 10 atm. The effect of variable initial concentrations of hydrogen on the combustion of methane and methane/carbon dioxide mixtures diluted by nitrogen was also experimentally studied. Concentration profiles for O2, H2, H2O, CO, CO2, CH2O, CH4, C2H6, C2H4, and C2H2 were measured by sonic probe sampling followed by chemical analyses (FT-IR, gas chromatography). A detailed chemical kinetic modeling of the present experiments and of the literature data (flame speed and ignition delays) was performed using a recently proposed kinetic scheme showing good agreement between the data and this modeling, and providing further validation of the kinetic model (128 species and 924 reversible reactions). Sensitivity and reaction paths analyses were used to delineate the important reactions influencing the kinetic of oxidation of the fuels in absence and in presence of additives (CO2 and H2). The kinetic reaction scheme proposed helps understanding the inhibiting effect of CO2 on the oxidation of hydrogen and methane and should be useful for gas turbine modeling.  相似文献   

9.
To reduce particulate emissions leading to a cleaner environment, it is important to understand how polycyclic-aromatic hydrocarbons (PAHs) and their precursors are formed during combustion. 2-butyne can decompose to propargyl and allyl radicals. These radicals can produce benzene and other PAHs, leading to the formation of soot. In the present study, pyrolysis, oxidation, and laminar flame speed experiments were performed for 2-butyne. The pyrolysis experiments were conducted in a single-pulse shock tube at 2 bar in the temperature range 1000 – 1500 K. Ignition delay times for 2-butyne/‘air’ mixtures were measured in the pressures range 1 – 50 bar, over the temperature range 660 – 1630 K, at equivalence ratios of 0.5, 1.0, and 2.0 using rapid compression machines and shock tubes. Moreover, laminar flame speed (LFS) experiments were performed at ambient temperature, at p = 1 – 3 atm, over an equivalence ratio range of 0.6 – 1.8. A new, detailed chemical kinetic model for 2-butyne has been developed and widely validated against the data measured in this study and those available in the literature. The significant reactions for 2-butyne pyrolysis, ignition, and oxidation are identified and discussed using flux and sensitivity analyses.  相似文献   

10.
Ignition delay times of cyclohexane-oxygen-argon and cyclopentane-oxygen-argon mixtures have been measured in a shock tube, the onset of ignition being detected by OH radical emission. Mixtures contained 0.5 or 1% of hydrocarbon for values of the equivalence ratio ranging from 0.5 to 2. Reflected shock waves allowed temperatures from 1230 to 1840 K and pressures from 7.3 to 9.5 atm to be obtained. These measurements have shown that cyclopentane is much less reactive than cyclohexane, as for a given temperature the observed autoignition delay times were about 10 times higher for the C5 compound than for the C6. Detailed mechanisms for the combustion of cyclohexane and cyclopentane have been proposed to reproduce these results. The elementary steps included in the kinetic models of the oxidation of cyclanes are close to those proposed to describe the oxidation of non cyclic alkanes and alkenes. Consequently, it has been possible to obtain these models by using an improved version of the EXGAS software, a computer package for the automatic generation of detailed kinetic models for the gas-phase combustion of alkanes and alkenes. Nevertheless, the modeling of the oxidation of cyclanes requires new types of generic reactions to be considered, and especially to define new correlations for the estimation of the rate constants. Quantum chemical calculations have been used to improve the estimation of some sensitive rate constants in the case of cyclopentane. The main reaction pathways have been derived from flow rate and sensitivity analysis.  相似文献   

11.
Ignition delay times and OH concentration time-histories were measured during n-dodecane oxidation behind reflected shocks waves using a heated, high-pressure shock tube. Measurements were made over temperatures of 727-1422 K, pressures of 15-34 atm, and equivalence ratios of 0.5 and 1.0. Ignition delay times were measured using side-wall pressure and OH emission diagnostics, and OH concentration time-histories were measured using narrow-linewidth ring-dye laser absorption near the R-branchhead of the OH A-X (0, 0) system at 306.47 nm. Shock tube measurements were compared to model predictions of four current n-dodecane oxidation detailed mechanisms, and the differences, particularly in the low-temperature negative-temperature-coefficient (NTC) region where the influence of non-ideal facility effects can be significant, are discussed. To our knowledge, the current measurements provide the first gas-phase shock tube ignition delay times (at pressures above 13 atm) and quantitative OH concentration time-histories for n-dodecane oxidation under practical engine conditions, and hence provide benchmark validation targets for refinement of jet fuel detailed kinetic modeling, since n-dodecane is widely used as the principal representative for n-alkanes in jet fuel surrogates.  相似文献   

12.
High pressure iso-octane shock tube experiments were conducted to assist in the development of a Jet A surrogate kinetic model. Jet A is a kerosene based jet fuel composed of hundreds of hydrocarbons consisting of paraffins, olefins, aromatics and naphthenes. In the formulation of the surrogate mixture, iso-octane represents the branched paraffin class of hydrocarbons present in aviation fuels like Jet A. The experimental work on iso-octane was performed in a heated high pressure single pulse shock tube. The mole fractions of the stable species were determined using gas chromatography and mass spectroscopy. Experimental data on iso-octane oxidation and pyrolysis were obtained for temperatures from 835 to 1757 K, pressures from 21 to 65 atm, reactions times from 1.11 to 3.66 ms, and equivalence ratios from 0.52 to 1.68, and ∞. Iso-octane oxidation showed that the fuel decays through thermally driven oxygen free decomposition at conditions studied. This observation prompted an experimental and modeling study of iso-octane pyrolysis using an iso-octane sub-model taken from a recently published n-decane/iso-octane/toluene surrogate model. The revised iso-octane sub-model showed improvements in predicting intermediate species profiles from pyrolytic experiments and oxidation experiments. The modifications to the iso-octane sub-model also contributed to better agreement in predicting the formation of carbon monoxide and carbon dioxide when compared to the recently published 1st Generation Surrogate model and a recently published iso-octane oxidation model. Model improvements were also seen in predicting species profiles from flow reactor oxidation experiments and ignition delay times at temperatures above 1000 K at both 10 and 50 atm.  相似文献   

13.
Modelling of aromatics and soot formation from large fuel molecules   总被引:2,自引:0,他引:2  
There is a need for prediction models of soot particles and polycyclic aromatic hydrocarbons (PAHs) formation in parametric conditions prevailing in automotive engines: large fuel molecules and high pressure. A detailed kinetic mechanism able to predict the formation of benzene and PAHs up to four rings from C2 fuels, recently complemented by consumption reactions of decane, was extended in this work to heptane and iso-octane oxidation. Species concentrations measured in rich, premixed flat flames and in a jet stirred reactor (JSR) were used to check the ability of the mechanism to accurately predict the formation of C2 and C3 intermediates and benzene at pressures ranging from 0.1 to 2.0 MPa. Pathways analyses show that propargyl recombination is the only significant route to benzene in rich heptane and iso-octane flames. When included as the first step of a soot particle formation model, the gas-phase kinetic mechanism predicts very accurately the final soot volume fraction measured in a rich decane flame at 0.1 MPa and in rich ethylene flames at 1.0 and 2.0 MPa.  相似文献   

14.
Experimental data were acquired for: (1) the ignition temperatures of nitrogen–diluted ethylene and propylene by counterflowing heated air for various strain rates and system pressures up to 7 atm; (2) the laminar flame speeds of mixtures of air with acetylene, ethylene, ethane, propylene, and propane, deduced from an outwardly propagating spherical flame in a constant-pressure chamber, for extensive ranges of lean-to-rich equivalence ratio and system pressure up to 5 atm. These data, respectively, relevant for low- to intermediate-temperature ignition chemistry and high-temperature flame chemistry, were subsequently compared with calculated results using a literature C1–C3 mechanism and an ethylene mechanism. Noticeable differences were observed in the comparison for both mechanisms, and sensitivity analyses were conducted to identify the reactions of importance.  相似文献   

15.
A detailed chemical kinetic model for the mixtures of primary reference fuel (PRF: n-heptane and iso-octane) and toluene has been proposed. This model is divided into three parts; a PRF mechanism [T. Ogura, Y. Sakai, A. Miyoshi, M. Koshi, P. Dagaut, Energy Fuels 21 (2007) 3233-3239], toluene sub-mechanism and cross reactions between PRF and toluene. Toluene sub-mechanism includes the low temperature kinetics relevant to engine conditions. A chemical kinetic mechanism proposed by Pitz et al. [W.J. Pitz, R. Seiser, J.W. Bozzelli, et al., in: Chemical Kinetic Characterization of the Combustion of Toluene, Proceedings of the Second Joint Meeting of the U.S. Sections of the Combustion Institute, 2001] was used as a starting model and modified by updating rate coefficients. Theoretical estimations of rate coefficients were performed for toluene and benzyl radical reactions important at low temperatures. Cross reactions between alkane, alkene, and aromatics were also included in order to account for the acceleration by the addition of toluene into iso-octane recently found in the shock tube study of the ignition delay [Y. Sakai, H. Ozawa, T. Ogura, A. Miyoshi, M. Koshi, W.J. Pitz, Effects of Toluene Addition to Primary Reference Fuel at High Temperature, SAE 2007-01-4104, 2007]. Validations of the model were performed with existing shock tube and flow tube data. The model well predicts the ignition characteristics of PRF/toluene mixtures under the wide range of temperatures (500-1700 K) and pressures (2-50 atm). It is found that reactions of benzyl radical with oxygen molecule determine the reactivity of toluene at low temperature. Although the effect of toluene addition to iso-octane is not fully resolved, the reactions of alkene with benzyl radical have the possibility to account for the kinetic interactions between PRF and toluene.  相似文献   

16.
Allyl and propargyl radicals are involved in the production of the first aromatic ring, which is considered a crucial process in forming polycyclic-aromatic hydrocarbons and soot. 1-Butyne decomposes to propargyl radicals during its pyrolysis and oxidation. To improve our knowledge of the kinetics of 1-butyne, its pyrolysis, oxidation, and laminar flame speed properties have been measured. Pyrolysis experiments were performed in a single-pulse shock tube at 2 bar in the temperature range 1000 – 1600 K. Ignition delay times for 1-butyne/‘air’ mixtures were measured at pressures of 1, 10, 30, and 50 bar, in the temperature range 680 – 1580 K, at equivalence ratios of 0.5, 1.0, and 2.0 using rapid compression machines and shock tubes. Furthermore, laminar flame speeds were measured at ambient temperature, at p = 1, 2, 3 atm, over an equivalence ratio range of 0.6 – 1.9. A new detailed mechanism for 1-butyne has been developed and widely validated using the new experimental data and those available in the literature. Important reactions of 1-butyne pyrolysis and oxidation are determined through flux and sensitivity analyses.  相似文献   

17.
Methyl radical concentration time-histories were measured during the oxidation and pyrolysis of iso-octane and n-heptane behind reflected shock waves. Initial reflected shock conditions covered temperatures of 1100-1560 K, pressures of 1.6-2.0 atm and initial fuel concentrations of 100-500 ppm. Methyl radicals were detected using cw UV laser absorption near 216 nm; three wavelengths were used to compensate for time- and wavelength-dependent interference absorption. Methyl time-histories were compared to the predictions of several current oxidation models. While some agreement was found between modeling and measurement in the early rise, peak and plateau values of methyl, and in the ignition time, none of the current mechanisms accurately recover all of these features. Sensitivity analysis of the ignition times for both iso-octane and n-heptane showed a strong dependence on the reaction C3H5 + H = C3H4 + H2, and a recommended rate was found for this reaction. Sensitivity analysis of the initial rate of CH3 production during pyrolysis indicated that for both iso-octane and n-heptane, reaction rates for the initial decomposition channels are well isolated, and overall values for these rates were obtained. The present concentration time-history data provide strong constraints on the reaction mechanisms of both iso-octane and n-heptane oxidation, and in conjunction with OH concentration time-histories and ignition delay times, recently measured in our laboratory, should provide a self-consistent set of kinetic targets for the validation and refinement of iso-octane and n-heptane reaction mechanisms.  相似文献   

18.
CO and O2 co-adsorption and the catalytic oxidation of CO on a Pt(1 1 0) surface under various pressures of CO and O2 (up to 250 mTorr) are studied using ambient pressure X-ray photoelectron spectroscopy (APXPS) and mass spectrometry. There is no surface oxide formation on Pt under our reaction conditions. CO oxidation in this pressure (<500 mTorr), O2 to CO ratio (<10), and temperature (150 °C) regime is consistent with the Langmuir-Hinshelwood reaction mechanism. Our findings provide in-situ surface chemical composition data of the catalytic oxidation of CO on Pt(1 1 0) at total pressures below 1 Torr.  相似文献   

19.
Naphthenes are chemical species that are always present in liquid hydrocarbon fuels and their pyrolysis and oxidation can play an important role in real liquid fuel combustion. In spite of its practical relevance, the chemical kinetics of naphthene pyrolysis and oxidation is not yet thoroughly investigated and there is not a general agreement on the role and rate of several elementary reactions involved. In this paper, the kinetics of the pyrolysis and oxidation of a simple naphthene, namely cyclo-hexane, has been investigated through detailed kinetic modeling. Ab initio calculations were performed to estimate the kinetic parameters of some primary reactions following the oxygen attack to the cyclo-hexane radical. In fact, due to the complex behavior induced by the ring structure of cyclo-hexane, such data were difficult to determine through thermo-chemical methods. Density functional theory (B3LYP/6-31g(d, p)) was adopted to determine structure and vibrational frequencies of transition states and reaction intermediates, while energies were evaluated using the G2MP2 approach. The kinetic parameters of the investigated primary reactions were then introduced in a general detailed kinetic model consisting of elementary reactions whose kinetic constants were taken from the literature. The so obtained kinetic model was used to simulate ignition delay times and species concentrations measured in various experiments reported in the literature. The agreement between experimental data and theoretical predictions shows the validity of the chosen approach and supports the correctness of the proposed kinetic model.  相似文献   

20.
F.D. Ismail  M. Fadhali  R. Qindeel 《Optik》2011,122(5):455-458
The equilibrium process of plasma nitrogen species by chemical kinetic reactions along various pressures is successfully investigated. The equilibrium process is required in industrial application to obtain the stable condition when heating up the material for having homogenous reaction. Nitrogen species densities is modeled by a continuity equation and extended Arrhenius form. These equations are used to integrate the change of density over the time. The integration is to acquire density and the reaction rate of each reaction where temperature and time dependence are imposed. A comparison is made with global model within pressure range of 1-100 mTorr and the temperature of electron is set to be higher than other nitrogen species. The results show that the chemical kinetic model only agrees for high pressure because of no power imposed; while the global model considers the external power along the pressure range then the electron and nitrogen species give highly quantity densities by factor of 3-5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号