首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigate equations of the form D t u = Δu + ξ? u for an unknown function u(t, x), t ∈ ?, xX, where D t u = a 0(u, t) + Σ k=1 r a k (t, u)? t k u, Δ is the Laplace-Beltrami operator on a Riemannian manifold X, and ξ is a smooth vector field on X. More exactly, we study morphisms from this equation within the category PDE of partial differential equations, which was introduced by the author earlier. We restrict ourselves to morphisms of a special form—the so-called geometric morphisms, which are given by maps of X to other smooth manifolds (of the same or smaller dimension). It is shown that a map f: XY defines a morphism from the equation D t u = Δu + ξ? u if and only if, for some vector field Ξ and a metric on Y, the equality (Δ + ξ?)f*v = f*(Δ + Ξ?)v holds for any smooth function v: Y → ?. In this case, the quotient equation is D t v = Δv + Ξ?v for an unknown function v(t, y), yY. It is also shown that, if a map f: XY is a locally trivial bundle, then f defines a morphism from the equation D t u = Δu if and only if fibers of f are parallel and, for any path γ on Y, the expansion factor of a fiber translated along the horizontal lift γ to X depends on γ only.  相似文献   

2.
We consider the quasilinear Schrödinger equations of the form ?ε2Δu + V(x)u ? ε2Δ(u2)u = g(u), x∈ RN, where ε > 0 is a small parameter, the nonlinearity g(u) ∈ C1(R) is an odd function with subcritical growth and V(x) is a positive Hölder continuous function which is bounded from below, away from zero, and infΛV(x) < inf?ΛV(x) for some open bounded subset Λ of RN. We prove that there is an ε0 > 0 such that for all ε ∈ (0, ε0], the above mentioned problem possesses a sign-changing solution uε which exhibits concentration profile around the local minimum point of V(x) as ε → 0+.  相似文献   

3.
We consider the Cauchy problem for the nonlinear differential equation
$$\varepsilon \frac{{du}}{{dx}} = f(x,u),u(0,\varepsilon ) = R_0 ,$$
where ? > 0 is a small parameter, f(x, u) ∈ C ([0, d] × ?), R 0 > 0, and the following conditions are satisfied: f(x, u) = x ? u p + O(x 2 + |xu| + |u|p+1) as x, u → 0, where p ∈ ? \ {1} f(x, 0) > 0 for x > 0; f u 2(x, u) < 0 for (x, u) ∈ [0, d] × (0, + ∞); Σ 0 +∞ f u 2(x, u) du = ?∞. We construct three asymptotic expansions (external, internal, and intermediate) and prove that the matched asymptotic expansion approximates the solution uniformly on the entire interval [0, d].
  相似文献   

4.
We deal with anomalous diffusions induced by continuous time random walks - CTRW in ?n. A particle moves in ?n in such a way that the probability density function u(·, t) of finding it in region Ω of ?n is given by ∫Ωu(x, t)dx. The dynamics of the diffusion is provided by a space time probability density J(x, t) compactly supported in {t ≥ 0}. For t large enough, u satisfies the equation
$$u\left( {x,t} \right) = \left[ {\left( {J - \delta } \right)*u} \right]\left( {x,t} \right)$$
, where δ is the Dirac delta in space-time. We give a sense to a Cauchy type problem for a given initial density distribution f. We use Banach fixed point method to solve it and prove that under parabolic rescaling of J, the equation tends weakly to the heat equation and that for particular kernels J, the solutions tend to the corresponding temperatures when the scaling parameter approaches 0.
  相似文献   

5.
In this paper, the Fokas unified method is used to analyze the initial-boundary value for the Chen- Lee-Liu equation
$i{\partial _t}u + {\partial_{xx}u - i |u{|^2}{\partial _x}u = 0}$
on the half line (?∞, 0] with decaying initial value. Assuming that the solution u(x, t) exists, we show that it can be represented in terms of the solution of a matrix Riemann-Hilbert problem formulated in the plane of the complex spectral parameter λ. The jump matrix has explicit (x, t) dependence and is given in terms of the spectral functions {a(λ), b(λ)} and {A(λ), B(λ)}, which are obtained from the initial data u0(x) = u(x, 0) and the boundary data g0(t) = u(0, t), g1(t) = ux(0, t), respectively. The spectral functions are not independent, but satisfy a so-called global relation.
  相似文献   

6.
We study the inverse problem of the reconstruction of the coefficient ?(x, t) = ?0(x, t) + r(x) multiplying ut in a nonstationary parabolic equation. Here ?0(x, t) ≥ ?0 > 0 is a given function, and r(x) ≥ 0 is an unknown function of the class L(Ω). In addition to the initial and boundary conditions (the data of the direct problem), we pose the problem of nonlocal observation in the form ∫0Tu(x, t) (t) = χ(x) with a known measure (t) and a function χ(x). We separately consider the case (t) = ω(t)dt of integral observation with a smooth function ω(t). We obtain sufficient conditions for the existence and uniqueness of the solution of the inverse problem, which have the form of ready-to-verify inequalities. We suggest an iterative procedure for finding the solution and prove its convergence. Examples of particular inverse problems for which the assumptions of our theorems hold are presented.  相似文献   

7.
This paper is devoted to a study of L~q-tracing of the fractional temperature field u(t, x)—the weak solution of the fractional heat equation(?_t +(-?_x)~α)u(t, x) = g(t, x) in L~p(R_+~(1+n)) subject to the initial temperature u(0, x) = f(x) in L~p(R~n).  相似文献   

8.
A stationary solution to the singularly perturbed parabolic equation ?u t + ε2 u xx ? f(u, x) = 0 with Neumann boundary conditions is considered. The limit of the solution as ε → 0 is a nonsmooth solution to the reduced equation f(u, x) = 0 that is composed of two intersecting roots of this equation. It is proved that the stationary solution is asymptotically stable, and its global domain of attraction is found.  相似文献   

9.
The authors study a porous medium equation with a right-hand side. The operator has nonlocal diffusion effects given by an inverse fractional Laplacian operator.The derivative in time is also fractional and is of Caputo-type, which takes into account"memory". The precise model isD_t~αu- div(u(-Δ)~(-σ)u) = f, 0 σ 1/2.This paper poses the problem over {t ∈ R~+, x ∈ R~n} with nonnegative initial data u(0, x) ≥0 as well as the right-hand side f ≥ 0. The existence for weak solutions when f, u(0, x)have exponential decay at infinity is proved. The main result is H¨older continuity for such weak solutions.  相似文献   

10.
This paper deals with the electrostatic MEMS-device parabolic equation u_t-?u =λf(x)/(1-u)~p in a bounded domain ? of R~N,with Dirichlet boundary condition,an initial condition u0(x) ∈ [0,1) and a nonnegative profile f,where λ 0,p 1.The study is motivated by a simplified micro-electromechanical system(MEMS for short) device model.In this paper,the author first gives an asymptotic behavior of the quenching time T*for the solution u to the parabolic problem with zero initial data.Secondly,the author investigates when the solution u will quench,with general λ,u0(x).Finally,a global existence in the MEMS modeling is shown.  相似文献   

11.
We prove that the mixed problem for the Klein–Gordon–Fock equation u tt (x, t) ? u xx (x, t) + au(x, t) = 0, where a ≥ 0, in the rectangle Q T = [0 ≤ x ≤ l] × [0 ≤ tT] with zero initial conditions and with the boundary conditions u(0, t) = μ(t) ∈ L p [0, T ], u(l, t) = 0, has a unique generalized solution u(x, t) in the class L p (Q T ) for p ≥ 1. We construct the solution in explicit analytic form.  相似文献   

12.
We consider the Monge–Ampère equation det D 2 u = b(x)f(u) > 0 in Ω, subject to the singular boundary condition u = ∞ on ?Ω. We assume that \(b\in C^\infty(\overline{\Omega})\) is positive in Ω and non-negative on ?Ω. Under suitable conditions on f, we establish the existence of positive strictly convex solutions if Ω is a smooth strictly convex, bounded domain in \({\mathbb R}^N\) with N ≥ 2. We give asymptotic estimates of the behaviour of such solutions near ?Ω and a uniqueness result when the variation of f at ∞ is regular of index q greater than N (that is, \(\lim_{u\to \infty} f(\lambda u)/f(u)=\lambda^q\) , for every λ > 0). Using regular variation theory, we treat both cases: b > 0 on ?Ω and \(b\equiv 0\) on ?Ω.  相似文献   

13.
Let X be a real normed space and let f: ? → X be a continuous mapping. Let T f (t 0) be the contingent of the graph G(f) at a point (t 0, f(t 0)) and let S + ? (0,∞) × X be the “right” unit hemisphere centered at (0, 0 X ). We show that
  1. 1.
    If dimX < ∞ and the dilation D(f, t 0) of f at t 0 is finite then T f (t 0) ∩ S + is compact and connected. The result holds for \(T_f (t_0 ) \cap \overline {S^ + } \) even with infinite dilation in the case f: [0,) → X.
     
  2. 2.
    If dimX = ∞, then, given any compact set F ? S +, there exists a Lipschitz mapping f: ? → X such that T f (t 0) ∩ S + = F.
     
  3. 3.
    But if a closed set F ? S + has cardinality greater than that of the continuum then the relation T f (t 0) ∩ S + = F does not hold for any Lipschitz f: ? → X.
     
  相似文献   

14.
A linear differential operator P(D) = P(D 1, …, D n ) with constant coefficients is called almost hypoelliptic if all the derivatives D α P of the characteristic polynomial P(ξ 1, …, ξ n ) can be estimated by P. The paper proves that if P is an almost hypoelliptic operator and f is an infinitely differentiable function, square-summable with a definite exponential weight, then any square summable with the same weight solution u of the equation P(D)u = f is again an infinitely differentiable function and P(ξ) → as ξ.  相似文献   

15.
Let D be an open connected subset of the complex plane C with sufficiently smooth boundary ?D. Perturbing the Cauchy problem for the Cauchy–Riemann system ??u = f in D with boundary data on a closed subset S ? ?D, we obtain a family of mixed problems of the Zaremba-type for the Laplace equation depending on a small parameter ε ∈ (0, 1] in the boundary condition. Despite the fact that the mixed problems include noncoercive boundary conditions on ?D\S, each of them has a unique solution in some appropriate Hilbert space H +(D) densely embedded in the Lebesgue space L 2(?D) and the Sobolev–Slobodetski? space H 1/2?δ(D) for every δ > 0. The corresponding family of the solutions {u ε} converges to a solution to the Cauchy problem in H +(D) (if the latter exists). Moreover, the existence of a solution to the Cauchy problem in H +(D) is equivalent to boundedness of the family {u ε} in this space. Thus, we propose solvability conditions for the Cauchy problem and an effective method of constructing a solution in the form of Carleman-type formulas.  相似文献   

16.
This paper is concerned with the following periodic Hamiltonian elliptic system
$$\left \{\begin{array}{l}-\Delta u+V(x)u=g(x,v)\, {\rm in }\,\mathbb{R}^N,\\-\Delta v+V(x)v=f(x,u)\, {\rm in }\, \mathbb{R}^N,\\ u(x)\to 0\, {\rm and}\,v(x)\to0\, {\rm as }\,|x|\to\infty,\end{array}\right.$$
where the potential V is periodic and 0 lies in a gap of the spectrum of ?Δ + V, f(x, t) and g(x, t) depend periodically on x and are superlinear but subcritical in t at infinity. By establishing a variational setting, existence of a ground state solution and multiple solution for odd f and g are obtained.
  相似文献   

17.
In the strip П = (?1, 0) × ?, we establish the existence of solutions of the Cauchy problem for the Korteweg-de Vries equation u t + u xxx + uu x = 0 with initial condition either 1) u(?1, x) = ?(x), or 2) u(?1, x) = ?(?x), where θ is the Heaviside function. The solutions constructed in this paper are infinitely smooth for t ∈ (?1, 0) and rapidly decreasing as x → +∞. For the case of the first initial condition, we also establish uniqueness in a certain class. Similar special solutions of the KdV equation arise in the study of the asymptotic behavior with respect to small dispersion of the solutions of certain model problems in a neighborhood of lines of weak discontinuity.  相似文献   

18.
We study the stationary Focker-Planck equation Δu ? div(u f) = 0 with a given vector field f of the class C 0 (R n ) on the basis of a fixed point principle that generalizes the contraction mapping method. Next, we introduce a parameter in the equation and prove the unique solvability of the equation Δu ? div( f) = 0 with the parameter in the class of positive slowly increasing functions. We reveal the analytic dependence of the positive solution u on the parameter γ. Pointwise estimates for positive solutions are proved.  相似文献   

19.
Global well-posedness of the initial-boundary value problem for the stochastic generalized Kuramoto- Sivashinsky equation in a bounded domain D with a multiplicative noise is studied. It is shown that under suitable sufficient conditions, for any initial data u0L2(D × Ω), this problem has a unique global solution u in the space L2(Ω, C([0, T], L2(D))) for any T >0, and the solution map u0 ? u is Lipschitz continuous.  相似文献   

20.
In this paper, we study the following stochastic Hamiltonian system in ?2d (a second order stochastic differential equation):
$$d{\dot X_t} = b({X_t},{\dot X_t})dt + \sigma ({X_t},{\dot X_t})d{W_t},({X_0},{\dot X_0}) = (x,v) \in \mathbb{R}^{2d},$$
where b(x; v) : ?2d → ?d and σ(x; v): ?2d → ?d ? ?d are two Borel measurable functions. We show that if σ is bounded and uniformly non-degenerate, and bH p 2/3,0 and ?σLp for some p > 2(2d+1), where H p α, β is the Bessel potential space with differentiability indices α in x and β in v, then the above stochastic equation admits a unique strong solution so that (x, v) ? Zt(x, v) := (Xt, ?t)(x, v) forms a stochastic homeomorphism flow, and (x, v) ? Zt(x, v) is weakly differentiable with ess.supx, v E(supt∈[0, T] |?Zt(x, v)|q) < ∞ for all q ? 1 and T ? 0. Moreover, we also show the uniqueness of probability measure-valued solutions for kinetic Fokker-Planck equations with rough coefficients by showing the well-posedness of the associated martingale problem and using the superposition principle established by Figalli (2008) and Trevisan (2016).
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号