首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 398 毫秒
1.
The study by X-ray diffraction, calorimetry, vibrational and impedance spectroscopy of CsH(SO4)0.76(SeO4)0.24 new solid solution is presented. Crystals of this composition undergo two phase transitions at T = 333 and 408 K. The last one at 408 K is a superionic-protonic transition (SPT) related to a rapid [HS(Se)O4] reorientation and fast H+ diffusion. A sudden jump in the conductivity plot confirms the presence of this transition. Above 408 K, this high temperature phase is characterized by high electrical conductivity (7 × 10t-3 Ω cm−1) and low activation energy (Ea < 0.3 eV).  相似文献   

2.
The betaspectra of 12B and 12N have been measured with a NaI crystal as spectrometer. Assuming a shape correction factor 1 + aW + bW2 and b = 1.106 × 10−4 MeV−2, b+ = −1.397 × 10−4 MeV−2, the spectra yield a = (+0.91 ± 0.11) × 10−2 MeV−1 and a+ = (−0.07 ± 0.09) × 10−2 MeV. the aa+ = (+0.98 ± 0.09) × 10−2 MeV−1 is in agreement with the weak magnetism prediction.  相似文献   

3.
A series of polyacrylonitrile–dimethylsulfoxide–CuX2 (X=CF3SO3, Cl, Br), films (foils) were prepared by means of the solution cast technique. The thickness of the foils was between 0.04 and 0.09 cm and they contained 70–80 wt.% of the solvent. Conductivities of the solid electrolytes were obtained from impedance measurements. The conductivity increases with the increase of the salt content up to 8 wt.%; at higher concentrations (>8 wt.%) the conductivity is more or less stable, and reaches, in the case of Cu(CF3SO3)2 and CuCl2, the level of ca. 10−3 Ω−1 cm−1 at room temperature. The foils based on the CuBr2 show even higher conductivity, close to 10−2 Ω−1 cm−1 at room temperature, a value comparable to that characteristic for liquid solutions. The temperature variation of the conductivity for all the systems studied is of the Arrhenius type. The activation energy, determined from linear plots lnσ=f(T−1), is of the order ca. 14 kJ mol−1 for the PAN/CuBr2/DMSO and of ca. 21 kJ mol−1 for the PAN/CuCl2/DMSO and the PAN/Cu(CF3SO3)2/DMSO systems.  相似文献   

4.
In our work single crystals of Mg4.5Na7(P2O7)4 were prepared, pulverized, pressed into pellets and sintered in order to measure the electrical conductivity of polycrystalline specimens. The conductivity was also measured on glassy specimens obtained by the melting of previously prepared crystals. The electrical conductivities at 25°C with values of the order of 10−16 Ω−1 cm−1 for polycrystalline samples and a value of the order of 10−14 Ω−1 cm−1 for glass, show that the glassy phase of Mg4.5Na7(P2 because of its greater molar volume and loosely packed structure, is a better matrix for ionic motion.  相似文献   

5.
D.-S. Choi  R. Gomer 《Surface science》1990,230(1-3):277-282
The diffusion of W on a (211) plane of a W field emitter has been re-examined by means of the fluctuation autocorrelation method. Diffusion along channels yielded E = 16.8 ± 0.5 kcal, D0 = (3 ± 1) × 10−5 cm2 s−1. For diffusion across channels E =6.6 kcal, D0 = 4 × 10−9cm2 s−1 at T < 752 K, and E = 24 kcal, D0 = 5 × 10−4 cm2 s−1 at T > 752 K. The results for diffusion along channels yield E and D0 values intermediate between recent results by Wang and Ehrlich [Surf. Sci. 206 (1988) 451] using field ion microscopy (E = 19 kcal, D0 = 7.7 × 10−3 cm2 s−1) and Tringides and Gomer [J. Chem. Phys. 84 (1986) 4049], using the same method as the present work but a larger slit (E = 13.3 kcal, D0 = 7 × 10−7 cm2 s−1). The results for cross channel diffus good agreement with those of Tringides and Gomer below 752 K, where these authors stopped. The new high temperature results suggest that the channel wall exchange mechanism postulated by Tringides and Gomer for cross channel diffusion at low T gives way to diffusion by climbing over the channel walls with higher E but also higher D0 above 752 K. Possible reasons for the discrepancies between these three sets of results and the absence of cross channel diffusion in the work of Wang and Ehrlich are briefly discussed.  相似文献   

6.
Nd2CuO4±δ is the non-superconducting prototype of the Re2−xMxCuO4ty family (Re=Pr, Nd, Sm and M=Ceor Th) of n-type oxide superconductors. Four-probe DC conductivity, EMF in P(O2) gradient, and thermopower measurements have been used to characterise its electric transport and defect structure between 300 and 900°C and between 5×10−4 and 1 atm oxygen partial pressure.

The results show that Nd2CuO4±δ can be oxygen under-stoichiometric (with n-type conductivity), near-stoichiometric, and over-stoichiometric (with p-type conductivity) in different T, P(O2) ranges.  相似文献   


7.
The ionic conductivity of the bulk phase of bonded hydronium NASICON (HyceramTM) was measured at equilibrium with an H2O/N2 and then a D2O/N2 atmosphere, each at 100% relative humidity and 75% relative humidity over the temperature range 25°C to 50°C. At 100% relative humidity and 25°C, the protonic system had a bulk conductivity of 5.0×10−4 S/cm and an activation energy of 17.3kJ/mole; the same sample, when deuterated, had a bulk conductivity of 2.2×10−4 S/cm and an activation energy of 19.3kJ/mole. At 75% relative humidity and 25°C, the conductivity of the protonated system decreased to 1.4×10−4S/cm with an activation energy of 24.1 kJ/mole. The deuterated sample at 75% relative humidity had a bulk conductivity of 5.4×10−5 S/cm with an activation energy of 26.0 kJ/mole. The isotope effect suggested a proton hopping (Grotthus) mechanism as the means by which the protons pass through the lattice.  相似文献   

8.
Polycrystalline (1−x)Ta2O5xTiO2 thin films were formed on Si by metalorganic decomposition (MOD) and annealed at various temperatures. As-deposited films were in the amorphous state and were completely transformed to crystalline after annealing above 600 °C. During crystallization, a thin interfacial SiO2 layer was formed at the (1−x)Ta2O5xTiO2/Si interface. Thin films with 0.92Ta2O5–0.08TiO2 composition exhibited superior insulating properties. The measured dielectric constant and dissipation factor at 1 MHz were 9 and 0.015, respectively, for films annealed at 900 °C. The interface trap density was 2.5×1011 cm−2 eV−1, and flatband voltage was −0.38 V. A charge storage density of 22.8 fC/μm2 was obtained at an applied electric field of 3 MV/cm. The leakage current density was lower than 4×10−9 A/cm2 up to an applied electric field of 6 MV/cm.  相似文献   

9.
In this paper, the results of preliminary studies of two new solvent-free polymer electrolytes based on poly(trimethylene carbonate), p(TMC), with lithium trifluoromethanesulphonate, (triflate), and lithium perchlorate are described. Thin films of these electrolytes were obtained by evaporation of solvent from homogeneous mixtures of known masses of host polymer and salt. Electrolytes with compositions of n between 1.5 and 85, where n represents the molar ratio of (O=COCH2CH2CH2O) units per lithium ion, have been prepared. These solvent-free electrolytes were characterized by measurements of total ionic conductivity, differential scanning calorimetry (DSC) and thermogravimetry (TGA). As expected from previous studies with these salts in poly(ethylene oxide), PEO, the triflate-based system showed superior thermal stability but with a lower total ionic conductivity than that of the perchlorate-containing electrolyte. The highest conductivity (approximately 3×10−4 Ω−1 cm−1) was found at 95°C with the electrolyte composition of (TMC)2LiClO4.  相似文献   

10.
Novel hyperbranched polymer, poly[bis(diethylene glycol)benzoate] capped with a 3,5-bis[(3′,6′,9′-trioxodecyl)oxy]benzoyl group (poly-Bz1a), was prepared, and its polymer electrolyte with LiN(CF3SO2)2, poly-Bz1a/LiN(CF3SO2)2 electrolyte, was all evaluated in thermal properties, ionic conductivity, and electrochemical stability window. The poly-Bz1a/LiN(CF3SO2)2 electrolyte exhibited higher ionic conductivity compared with a polymer electrolyte based on poly[bis(diethylene glycol)benzoate] capped with an acetyl group (poly-Ac1a), and the ionic conductivity of poly-Bz1a/LiN(CF3SO2)2 electrolyte was to be 7×10−4 S cm−1 at 80 °C and 1×10−6 S cm−1 at 30 °C, respectively. The existence of a 3,5-bis[(3′,6′,9′-trioxodecyl)oxy]benzoyl group as a branching unit present at ends in the base polymer improved significantly ionic conductivity of the hyperbranched polymer electrolytes. The polymer electrolyte exhibited the electrochemical stability window of 4.2 V at 70 °C and was stable until 300 °C.  相似文献   

11.
In this work we studied the ionic conductivity for three copolymers of the title co-monomers as a function of LiClO4 content, temperature and ambient relative humidity. We also investigated the interactions between the salt and the co-monomer blocks in the copolymers and its effect on the morphology and thermal properties of the copolymer/salt complexes. Our data indicate that the Li+ ion predominantly interacts with the ethylene oxide repeating units of the copolymers. The copolymer with the highest ionic conductivity was obtained with an ethylene oxide/epichlorohydrin ratio of 84/16 containing 5.5% (w/w) of LiClO4. It showed a conductivity of 4.1×10−5 S cm−1 (30°C, humidity< 1 ppm) and 2.6×10−4 S cm−1 at 84% relative humidity (24°C). The potential stability window of the copolymer/salt complex is 4.0 V, as measured by cyclic voltammetry. For comparison, we also prepared a blend of the corresponding homopolymers containing LiClO4; it showed higher crystallinity and lower ionic conductivity.  相似文献   

12.
Phosphorescence characteristics of CdWO4 excited by one-photon (λ = 308 nm) and two-photon (λ = 570–590 nm) processes were measured. A Davydov splitting of 120 ± 20 cm−1 was obtained in the phosphorescence spectra, suggesting a diffusion coefficient of about 1.2 × 10−2 cm2 s−1, and a diffusion length of about 3.1 × 10−4 cm for the room temperature measured lifetime of 8μs. The phosphorescence quantum efficiency was less than 2% at low temperatures (only 0.25% at room temperature), indicating that the dominant decay mechanism was radiationless. The radiative lifetime was thus estimated as 1–2 ms. The two-photon phosphorescence excitation is characterized by an absorption cross-section of the order of 10−49cm4s.  相似文献   

13.
Absolute wavenumbers of 140 lines belonging to ν3 band of 16O12C32S, around 2060 cm−1, are measured under vacuum with a high resolution Fourier Spectrometer, within ±0.11 × 10−3 cm−1 (3.1 MHz) . They achieve a 20-fold improvement in accuracy over previous measurements and are consequently proposed as secondary infrared standards. Molecular constants are reported.  相似文献   

14.
By undertaking AC electrochemical impedance experiments on yttria stabilised zirconia electrolytes with polished Y1Ba2Cu3O7−x electrodes, the activation energy for oxygen ion transport within the bulk of Y1Ba2Cu3O7−x, in air, over the temperature range 823 K–1043 K, was determined to be 1.50 ± 0.05 eV. At 1000 K the oxygen ionic conductivity was calculated to be around one order of magnitude lower than that in yttria stabilised zirconia. Typical calculated values were σ=5×10−5 (ω cm)−1 and 6×10−3 (ω cm)−1 at the respective temperatures 823 K and 1043 K. By employing a similar cell but with Y1Ba2Cu3O7−x paste electrodes, oxygen transfer between the Y1Ba2Cu3O7−x and the electrolyte was found to occur via a surface diffusional processes. Over the temperature range 873 K–1098 K, in air, the activation energy for in-diffusion at the surface was found to be 1.4±0.1 eV and that for out-diffusion at the surface to be 1.76±0.05 eV.  相似文献   

15.
We have investigated the thermal and ionic conductivity properties of the elastomer poly(ethylene oxide-co-epichlorohydrin) filled with NaI and I2. The reason for using this composition is its potential application as electrolyte in photoelectrochemical cells. This copolymer was characterized as a function of NaI concentration, temperature and relative humidity. According to the data obtained, the Na+ ion interacts with the ethylene oxide repeating units by means of Lewis type acid–base interactions. The empirical Vogel–Tamman–Fulcher equation was used to model the conductivity and temperature relationships, indicating that the conduction occurs in the amorphous phase of the copolymer. The sample with 9.0% (w/w) of NaI presents a conductivity of 1.5×10−5 S cm−1 in a dry atmosphere (30°C, [H2O]<1 ppm) and 2.0×10−4 S cm−1 at 86% relative humidity (22°C).  相似文献   

16.
Proton conductivity of phosphoric acid derivative of fullerene   总被引:1,自引:0,他引:1  
The proton conductive property of methano [60] fullerene diphosphoric acid has been investigated under various humidity conditions at the temperature range between 15 and 45 °C. It shows proton conductivity as high as 10−2 S cm−1 at 25 °C under relative humidity of 95%. Thermal analyses including TG–DTA and thermal desorption mass spectroscopy (TDS) confirm that the compound is thermally stable up to 200 °C. Proton conduction of the compound depends very much on humidity or water content. The logarithmic conductivity at 25 °C is increased linearly with increasing relative humidity. The activation energy (Ea) estimated from the slope of log(σT) vs. 1/T is decreased from 1.08 to 0.52 eV, as the relative humidity is increased from 40% to 75%. The humidity dependence of conductivity is discussed in the light of the observed hydration isotherm.  相似文献   

17.
Li3Sc2(PO4)3 is a promising candidate for use as an electrolyte in solid state lithium rechargeable microbatteries due to its stability in air, ease of preparation, and resistance to dielectric breakdown. The room temperature ionic conductivity was optimized resulting in an increase of over two orders of magnitude to 3×10−6S/cm. The formation of Li3(Sc2−xMx)(PO4)3, where M=Al3+ or Y3+, resulted in the decrease of porosity, greater sinterability, and considerable enhancement of the ionic conductivity. Yttrium substitutions enhanced the conductivity slightly while aluminum increased the room temperature ionic conductivity to 1.5×10−5S/cm for x=0.4. Preliminary electron beam evaporation of Li3Sc2(PO4)3 yielded amorphous thin films with ion ic conductivity as high as 5×10−5S/cm and a composition of Li4.8Sc1.4(PO4)3.  相似文献   

18.
The effects of dopants on the electrical conductivity of the perovskite-type oxide LaInO3 have been investigated. Replacement of La by Sr is the most effective way to enhance the conductivity of LaInO3, whereas Ca substitution for In is rather difficult due to the large difference in the ion radii. The optimum composition is La0.9Sr0.1InO3−δ whose maximum conductivity is 7.6×10−3 S cm−1 at 900°C. The electrical conductivity of La0.9Sr0.1InO3−δ has been measured over a wide range of oxygen partial pressure from pO2=1 to 10−25 atm. P-type and n-type behavior at high and low oxygen partial pressure have been observed, respectively, while at intermediate oxygen partial pressures, the electrical conductivity changes only slightly with the oxygen partial pressure. The concept of a single layer solid oxide fuel cell based on a La0.9Sr0.1InO3−δ ceramic pellet has been tested. A maximum power density of 3 mW cm−2 at 800°C was achieved when dilute H2 and air were used as fuel and oxidizing agent, respectively.  相似文献   

19.
The adsorption of CO2 on the NaCl(100) surface was studied with a high-resolution LEED-system. Measurements without charging up at low electron energies and without damage by the e-beam could be performed by using ultrathin epitaxial films on a conducting Ge(100) substrate. The adsorption behavior was recorded as a function of time and pressure at constant substrate temperatures of 78 and 83 K and CO2 partial pressures from 4 × 10−8−2 × 10−3 Pa. The adsorption system shows a first-order two-dimensional phase transition to a (2 × 1) superstructure including glide planes (herringbone-like structure) at p = 7.2 × 10−8Pa (T = 78 K). The condensation of the CO2 solid is starting at p = 1.5 × 10−4 Pa (T = 78 K). The LEED-pattern shows in this c(2 × 2) superstructure, which corresponds to the pyrite-like structure of the CO2 solid. Both observed superstructures are commensurable with the NaCl(100) surface. Observation of island growth shows that the domains of the (2 × 1) superstructures have already at coverage of 5% of a monolayer an average lateral size of at least 200 A.  相似文献   

20.
Powder X-ray diffraction (XRD) analysis showed that the single phase perovskite-type structure of Ba1−xLaxCe0.90−xY0.10+xO3− (0 x 0.40, =0.05) could be maintained in a wide region of doping level by simultaneous partial substitution of La3+ for Ba2+-site and Y3+ for Ce4+-site in BaCeO3. The conduction properties of these oxides were investigated using various electrochemical methods in the same concentration of oxygen vacancy (=0.05). At high oxygen partial pressure, these oxides exhibited a mixed oxide ionic and p-type electronic conduction while at low oxygen partial pressure their conduction was almost protonic. Among these oxides, BaCe0.90Y0.10O3− exhibited the highest conductivities with a value of 1.24×10−1 S/cm in dry oxygen, and 5.65×10−2 S/cm in wet hydrogen at 1000°C. Both of the proton and oxide ion conductivities under oxygen and under hydrogen atmospheres decreased monotonically with the increasing substitution for Ba2+- and Ce4+-sites. The decreases in ion conductivities appear to relate to the decreased free volume (Vf) of crystal lattice as well as the increased distortion of lattice from ideal cubic perovskite structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号