首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present paper a method is proposed to investigate the behaviour of the axisymmetric system consisting of an infinite thin elastic cylindrical shell submerged in an unbounded elastic medium, filled with an ideal compressible liquid and containing a vibrating spherical inclusion, under periodic dynamic action. The goal is the analysis of the so-called “resonance” phenomena; namely: finding conditions for their appearance, and possible control by means of characteristic parameters of the hydroelastic system under consideration. The technique presented in this work was developed during the realization of a project on elaboration of methods of renewal of oil production in foul wells at the Theory of Vibration Department of the S.P. Timoshenko Institute of Mechanics of the Ukrainian Academy of Science. This mathematical technique allows rewriting the general solution of the corresponding mathematical physics equations from one coordinate system to another, so as to get an exact analytical solution (as a Fourier series) of the interaction problem for a collection of rigid and elastic bodies.  相似文献   

2.
A method is proposed to investigate the behavior of an axisymmetric system consisting of an infinite thin elastic cylindrical shell immersed in an infinite elastic medium, filled with a perfect compressible fluid, and containing an oscillating spherical inclusion. The system is subjected to periodic excitation. The task is to detect so-called resonant phenomena, to establish conditions that cause them, and to examine the possibilities of using the characteristic parameters of such a hydroelastic system to influence these conditions. The method allows transforming the general solutions of mathematical physics equations from one coordinate system to another to obtain exact analytic solutions (in the form of Fourier series) to interaction problems for systems of rigid and elastic bodies __________ Translated from Prikladnaya Mekhanika, Vol. 42, No. 7, pp. 82–97, July 2006.  相似文献   

3.
We show that continuum models for ideal plasticity can be obtained as a rigorous mathematical limit starting from a discrete microscopic model describing a visco-elastic crystal lattice with quenched disorder. The constitutive structure changes as a result of two concurrent limiting procedures: the vanishing-viscosity limit and the discrete-to-continuum limit. In the course of these limits a non-convex elastic problem transforms into a convex elastic problem while the quadratic rate-dependent dissipation of visco-elastic lattice transforms into a singular rate-independent dissipation of an ideally plastic solid. In order to emphasize our ideas we employ in our proofs the simplest prototypical system mimicking the phenomenology of transformational plasticity in shape-memory alloys. The approach, however, is sufficiently general that it can be used for similar reductions in the cases of more general plasticity and damage models.  相似文献   

4.
This paper represents a continuation of the author's previous work which deals with an analytical model of thermal stresses which originate during a cooling process of an anisotropic solid elastic continuum. This continuum consists of anisotropic spherical particles which are periodically distributed in an anisotropic infinite matrix. The infinite matrix is imaginarily divided into identical cubic cells with central particles. This multi-particle–matrix system represents a model system which is applicable to two-component materials of the precipitate–matrix type. The thermal stresses, which originate due to different thermal expansion coefficients of components of the model system, are determined within the cubic cell. The analytical modelling results from fundamental equations of continuum mechanics for solid elastic continuum (Cauchy's, compatibility and equilibrium equations, Hooke's law). This paper presents suitable mathematical procedures which are applied to the fundamental equations. These mathematical procedures lead to such final formulae for the thermal stresses which are relatively simple in comparison with the final formulae presented in the author's previous work which are extremely extensive. Using these new final formulae, the numerical determination of the thermal stresses in real two-component materials with anisotropic components is not time-consuming.  相似文献   

5.
The group properties are investigated for the non-linear mathematical model describing thin walled elastic tubes filled with incompressible fluid. The analysis developed for determining the generators of the group provides a mathematical approach for characterizing classes of constitutive laws for internal area, outflow and viscous retarding force. Thus integration of a system of (non-linear) ordinary differential equations gives rise to several classes of invariant solutions for non-linear arterial flow problems. Some features of these solutions are also discussed.  相似文献   

6.
An analytical and experimental research program was performed to investigate the effects of flexible tanks and lines and the total system dynamic response of a simple physical system which had some of the essential features of a liquid-fueled launch vehicle. Several vessel-wall materials were used to obtain a range of elastic moduli. Water was used to simulate the fuel and an electromagnetic shaker provided external excitation such as might originate from a rocket-propulsion system. Experimental data were compared to values obtained from mathematical models for the many degree-of-freedom lumped-mass representation.  相似文献   

7.
Kinematic and dynamic control problems for a pedestal-mounted robot with a multilink arm are formulated. The robot is considered a system of perfectly rigid bodies controlled by a combined actuating system. The mathematical model of robot dynamics accounts for the elastic properties of actuator components based on the formalism of Lagrange equations of the second kind. The effect of the elastic compliance of the actuator components on the dynamics of manipulator links and actuator motors is discussed. A robot with a two-link arm is considered as an example  相似文献   

8.
9.
A mathematical dynamic model is proposed for a controlled gantry robot with elastic compliance and inertia distributed along a two-link arm. The model includes a nonlinear system of hybrid differential equations. Kinematic and dynamic control problems for the robot are formulated. The dynamic characteristics of the robot are analyzed in comparison with an equivalent model of a robot manipulator with rigid links based on the Lagrangian formalism __________ Translated from Prikladnaya Mekhanika, Vol. 42, No. 2, pp. 121–128, February 2006.  相似文献   

10.
Singularity theory is applied for the study of the characteristic three-dimensional tensegrity-cytoskeleton model after adopting an incompressibility constraint. The model comprises six elastic bars interconnected with 24 elastic string members. Previous studies have already been performed on non-constrained systems; however, the present one allows for general non-symmetric equilibrium configurations. Critical conditions for branching of the equilibrium are derived and post-critical behaviour is discussed. Classification of the simple and compound singularities of the total potential energy function is effected. The theory is implemented into the cusp catastrophe for the case of one-dimensional branching of the buckling-allowed tensegrity model, and an elliptic umbilic singularity for compound branching of a rigid-bar model. It is pointed out that singularity studies with constraints demand a quite different mathematical approach than those without constraints.  相似文献   

11.
A model of an elastic solid in the form of a system of elastically connected rigid elements is proposed. It is shown that the long–range interaction should be taken into account. The mathematical model proposed is, in essence, the physical model of a solid, which substantially broadens the range of its application.  相似文献   

12.
The Scott bond test method has been used extensively in the paper industry over the years as a means to assess the bond strength of paper. The method has been a subject of some controversy lately since it does not always correlate to the sensitivity of the material to fracture by delamination. To gain some further insight into which parameters govern the fracture process in a Scott bond test a simplified approach has been chosen in order to formulate an analytical mathematical/mechanical model of the test. The model is dynamic in the sense that inertia effects are included. The material model utilised is a simple cohesive theory that assumes a linear behaviour between stress and crack opening when the material has started to degrade. This choice of material model makes the mathematical model very nonlinear. In fact, a system of three coupled nonlinear second order partial differential equations have to be solved and adjusted to the correct initial conditions. The material parameters needed for the model are the elastic modulus in the thickness direction, the transverse shear (elastic) modulus, the tensile strength (in the thickness direction) and the fracture work (per unit area) for a delamination crack. To investigate the ability of the model, a Scott bond testing apparatus have been equipped with a piezoelectric load sensor. The load cell was mounted on the apparatus’ pendulum so that the load acting on the sample holder could be recorded during the whole impact stage. This was done for a number of different initial velocities of the pendulum and it is found that the model gives a fair prediction of the contact load.  相似文献   

13.
采用数学弹性力学的稳定平衡方程并结合富氏积分变换的方法研究了含表面平行裂纹的弹性体在压缩载荷下的表面分层失稳问题。导出了一级显式的精确齐次奇异积分方程组,然后.通过Gauss-Chebyshev积分公式,得到一组齐次代数方程组,从而求出临界压缩载荷。并将结果与经典的材料力学梁板稳定的研究方法所得结果进行了比较,指出经典方法误差太大而不适于求解此问题。最后,利用数学弹性力学解求出的等效弹性支承常数给出一个简单精确的临界压缩载荷计算公式。  相似文献   

14.
In this paper, we consider a model describing evolution of damage in elastic materials, in which stiffness completely degenerates once the material is fully damaged. The model is written by using a phase transition approach, with respect to the damage parameter. In particular, a source of damage is represented by a quadratic form involving deformations, which vanishes in the case of complete damage. Hence, an internal constraint is ensured by a maximal monotone operator. The evolution of damage is considered “reversible”, in the sense that the material may repair itself. We can prove an existence result for a suitable weak formulation of the problem, rewritten in terms of a new variable (an internal stress). Some numerical simulations are presented in agreement with the mathematical analysis of the system.  相似文献   

15.
In this paper,a new mathematical form,matrix,continued fraction(MCF)isintroduced to describe the decay of effects of an equilibrant system of forces acting on asphere of an elastic body.By this way,the famous Saint-Venant’s principle is proved oftenbut not always valid in computational mechanics.  相似文献   

16.
In this paper, the buckling and post-buckling behavior of an elastic lattice system referred to as the discrete elastica problem is investigated using an equivalent non-local continuum approach. The geometrically exact post-buckling analysis of the elastic chain, also called Hencky system, is first numerically solved using the shooting method. This discrete physical model is also mathematically equivalent to a finite difference formulation of the continuum elastica. Starting from the exact difference equations of the discrete problem, a continualization method is applied for approximating the difference operators by differential ones, in order to better characterize the discrete system by an enriched continuous one. It is shown that the new continuum associated with the discrete system exactly fits the discrete elastica post-buckling problem, where the non-locality is of Eringen׳s type (also called stress gradient non-local model). An asymptotic expansion is performed for both the discrete and the non-local continuum models, in order to approximate the post-buckling branches of the discrete system. Some numerical investigations show the efficiency of the non-local approach, especially for capturing the scale effects inherent to the cell size of the lattice model.  相似文献   

17.
We perform the group foliation of the system of Lamé equations of the classical dynamical theory of elasticity for an infinite subgroup contained in a normal divisor of the main group. The resolving system of this foliation includes the following two classical systems of mathematical physics: the system of equations of vortex-free acoustics and the system of Maxwell equations, which allows one to use wider groups to obtain exact solutions of the Lamé equations. We obtain a first-order conformal-invariant system, which describes shear waves in a three-dimensional elastic medium. We also give examples of partially invariant solutions.  相似文献   

18.
The nonstationary indentation of a rigid blunt indenter into an elastic layer is studied. An approach to solving a mixed initial-boundary-value problem with an unknown moving boundary is developed. The problem is reduced to an infinite system of integral equations and the equation of motion of the indenter. The system is solved numerically. The analytical solution of the nonmixed problem is found for the initial stage of the indentation process __________ Translated from Prikladnaya Mekhanika, Vol. 44, No. 3, pp. 55–65, March 2008.  相似文献   

19.
The crack growth condition was obtained in [1, 2] from energy considerations and holds for arbitrary nonlinearly elastic materials. This condition is reduced to determining the trajectory-independent transition from one of the shores of the mathematical cut to the other shore in the J-integral. The time when the J-integral attains the critical value corresponds to the initiation of crack motion. In the present paper, we consider the steady-state strip separation process starting from the fundamental thermodynamic relation. The strip material behavior is determined both at the stage of stable (in general, elastoplastic) loading and at the stage of Drucker unsdtable strain until the time at which the interaction between particles ceases. We single out a domain of unstable material strain, i.e., an interaction layer whose initial width is assumed to be a universal constant of the material [3]. The proposed approach permits expressing the material surface energy via the critical thermomechanical parameters (determined from the complete strain diagram) and the interaction layer thickness. We obtain expressions for the critical values of J-integrals. The critical values of J-integrals [4–6] corresponding to nonlinearly elastic and ideally plastic materials follow from general considerations. We have shown that the possibility of using J-integrals as elastoplastic separation criteria depends on the layer thickness of an irreversibly strained material. If the corresponding thickness is independent of the boundary conditions and the body geometry, then it is possible to use the value of the J-integral as a separation criterion; this corresponds to the Irwin-Orowan quasibrittle fracture approach.  相似文献   

20.
分析HC轧机辊间接触分布和辊系弹性变形对于改善辊间压力分布状态,减少轧故褂檬倜案纳瓢逍畏浅V匾?醯捎诩扑懔亢艽?使用传统数值方法(有限元法或边界元法)分析辊间接触和辊系变形是非常困难的.本文描述了一种基于点-面接触模型的三维弹性接触Taylor级数多极边界元法,给出了数学规划解析方法,适合大规模弹性接触问题的求解....  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号