首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
We report on experimental observations of chaotic and regular motion of ultracold atoms confined by a billiard-shaped optical dipole potential induced by a rapidly scanning laser beam. To investigate the dynamics of the atoms confined by such an "atom-optics" billiard we measure the decay of the number of trapped atoms through a hole on the boundary. A fast and purely exponential decay, the clear signature of chaotic motion, is found for a stadium billiard, but not for a circular or an elliptical billiard, in agreement with theory. We also investigated the effects of decoherence, velocity spread, and gravity on regular and chaotic motion.  相似文献   

2.
The quantum dynamics of a chaotic billiard with moving boundary is considered in this paper. We found a shape parameter Hamiltonian expansion, which enables us to obtain the spectrum of the deformed billiard for deformations so large as the characteristic wavelength. Then, for a specified time-dependent shape variation, the quantum dynamics of a particle inside the billiard is integrated directly. In particular, the dispersion of the energy is studied in the Bunimovich stadium billiard with oscillating boundary. The results showed that the distribution of energy spreads diffusively for the first oscillations of the boundary (=2Dt). We studied the diffusion constant D as a function of the boundary velocity and found differences with theoretical predictions based on random matrix theory. By extracting highly phase-space localized structures from the spectrum, previous differences were reduced significantly. This fact provides numerical evidence of the influence of phase-space localization on the quantum diffusion of a chaotic system.  相似文献   

3.
We consider classical billiards in plane, connected, but not necessarily bounded domains. The charged billiard ball is immersed in a homogeneous, stationary magnetic field perpendicular to the plane. The part of dynamics which is not trivially integrable can be described by a bouncing map. We compute a general expression for the Jacobian matrix of this map, which allows us to determine stability and bifurcation values of specific periodic orbits. In some cases, the bouncing map is a twist map and admits a generating function. We give a general form for this function which is useful to do perturbative calculations and to classify periodic orbits. We prove that billiards in convex domains with sufficiently smooth boundaries possess invariant tori corresponding to skipping trajectories. Moreover, in strong field we construct adiabatic invariants over exponentially large times. To some extent, these results remain true for a class of nonconvex billiards. On the other hand, we present evidence that the billiard in a square is ergodic for some large enough values of the magnetic field. A numerical study reveals that the scattering on two circles is essentially chaotic.  相似文献   

4.
We study the dynamics of one-particle and few-particle billiard systems in containers of various shapes. In few-particle systems, the particles collide elastically both against the boundary and against each other. In the one-particle case, we investigate the formation and destruction of resonance islands in (generalized) mushroom billiards, which are a recently discovered class of Hamiltonian systems with mixed regular-chaotic dynamics. In the few-particle case, we compare the dynamics in container geometries whose counterpart one-particle billiards are integrable, chaotic, and mixed. One of our findings is that two-, three-, and four-particle billiards confined to containers with integrable one-particle counterparts inherit some integrals of motion and exhibit a regular partition of phase space into ergodic components of positive measure. Therefore, the shape of a container matters not only for noninteracting particles but also for interacting particles.  相似文献   

5.
The dynamics in weakly chaotic Hamiltonian systems strongly depends on initial conditions (ICs) and little can be affirmed about generic behaviors. Using two distinct Hamiltonian systems, namely one particle in an open rectangular billiard and four particles globally coupled on a discrete lattice, we show that in these models, the transition from integrable motion to weak chaos emerges via chaotic stripes as the nonlinear parameter is increased. The stripes represent intervals of initial conditions which generate chaotic trajectories and increase with the nonlinear parameter of the system. In the billiard case, the initial conditions are the injection angles. For higher-dimensional systems and small nonlinearities, the chaotic stripes are the initial condition inside which Arnold diffusion occurs.  相似文献   

6.
We present a study of a series of eigenstates occurring in the wedge billiard which may be quantized about tori by sejiclassical adiabatic quantization, even though the underlying classical system exhibits hard chaos and strictly possesses no tori. We also show that adiabatic eigenstates should be common in many chaotic systems, especially among the lower eigenstates, and present a heuristic argument as to why this should be so.  相似文献   

7.
Some dynamical properties for a dissipative time-dependent oval-shaped billiard are studied. The system is described in terms of a four-dimensional nonlinear mapping. Dissipation is introduced via inelastic collisions of the particle with the boundary, thus implying that the particle has a fractional loss of energy upon collision. The dissipation causes profound modifications in the dynamics of the particle as well as in the phase space of the non-dissipative system. In particular, inelastic collisions can be assumed as an efficient mechanism to suppress Fermi acceleration of the particle. The dissipation also creates attractors in the system, including chaotic. We show that a slightly modification of the intensity of the damping coefficient yields a drastic and sudden destruction of the chaotic attractor, thus leading the system to experience a boundary crisis. We have characterized such a boundary crisis via a collision of the chaotic attractor with its own basin of attraction and confirmed that inelastic collisions do indeed suppress Fermi acceleration in two-dimensional time-dependent billiards.  相似文献   

8.
9.
We consider a slowly rotating rectangular billiard with moving boundaries and use canonical perturbation theory to describe the dynamics of a billiard particle. In the process of slow evolution, certain resonance conditions can be satisfied. Correspondingly, phenomena of scattering on a resonance and capture into a resonance happen in the system. These phenomena lead to destruction of adiabatic invariance and to unlimited acceleration of the particle.  相似文献   

10.
The purpose of this paper is to study the dynamics of a square billiard with a non-standard reflection law such that the angle of reflection of the particle is a linear contraction of the angle of incidence. We present numerical and analytical arguments that the nonwandering set of this billiard decomposes into three invariant sets, a parabolic attractor, a chaotic attractor, and a set consisting of several horseshoes. This scenario implies the positivity of the topological entropy of the billiard, a property that is in sharp contrast with the integrability of the square billiard with the standard reflection law.  相似文献   

11.
We study chaotic behaviour of the motion of a particle moving like in a billiard table outside some disks where a symmetric potential acts. Quadratic forms introduced in (Markarian, 1988) to study non-vanishing Lyapunov exponents are used.  相似文献   

12.
The transport properties of a caterpillar-like Sinai billiard are investigated in the ballistic regime. The experimental kinetic coefficients exhibit pronounced features, characteristic of this kind of billiard. A Monte-Carlo style simulation of the semi-classical electron motion is performed in order to model the transmission probabilities Tij of an ideal caterpillar structure. By visualising the spatial charge density distributions, the main features in the transmission probabilities are related to special electron orbits which dominate the electron dynamics at a given B. Finally, Poincaré sections are calculated close to the commensurability condition. The appearance of stability islands surrounded by the stochastic sea characterises the presence of regular electron skipping orbits involved in the ballistic transport phenomena.  相似文献   

13.
It is shown that the neverending oscillatory behavior of the generic solution, near a cosmological singularity, of the massless bosonic sector of superstring theory can be described as a billiard motion within a simplex in nine-dimensional hyperbolic space. The Coxeter group of reflections of this billiard is discrete and is the Weyl group of the hyperbolic Kac-Moody algebra E10 (for type II) or BE10 (for type I or heterotic), which are both arithmetic. These results lead to a proof of the chaotic ("Anosov") nature of the classical cosmological oscillations, and suggest a "chaotic quantum billiard" scenario of vacuum selection in string theory.  相似文献   

14.
Signs of quantum chaos in the spectra of linear Hamiltonian systems including scattering billiards of various configurations with kinks of the lateral surface have been experimentally studied. A billiard with kinks of the lateral surface at which the second derivative is indefinite constitutes a scattering K system. As a result, the spectrum of such a billiard and the corresponding model resonator becomes chaotic and the distribution of spectral intervals is close to a Wigner distribution. The spectral rigidity curves have been measured for a model microwave cavity whose shape is similar to the scattering billiard with kinks of the lateral surface. It has been found that the characteristics of the chaotic spectrum, the distribution of the spectral intervals, and the spectral rigidity curves for billiards with kinks of the lateral boundary exhibit signs of quantum chaos.  相似文献   

15.
Santanu Pal 《Pramana》1997,48(2):425-437
We shall discuss the role of chaotic intrinsic motion in dissipative dynamics of the collective coordinates for nuclear systems. Using the formalism of linear response theory, it will be shown that the dissipation in adiabatic collective motion depends on the degree of chaos in the intrinsic dynamics of a system. This gives rise to a shape dependent dissipation rate for collective coordinates when the intrinsic motion is described by the independent particle model in a nucleus. The shape dependent chaos parameter measuring the degree of chaos in the intrinsic dynamics of the nuclear system will be obtained using the interpolating Brody distribution of nearest neighbour spacings in the single particle energy spectrum. A similar shape dependence is also found to be essential for phenomenological dissipation rates used in fission dynamics calculations.  相似文献   

16.
We demonstrate that the defocusing mechanism fails to work if not all focusing components of the boundary are absolutely focusing. More precisely, we construct billiard tables with arbitrary long free path away from a non-absolutely focusing component such that a nonlinearly stable periodic orbit exists. Therefore the only known standard procedure of constructing chaotic ergodic billiards works in general only if all focusing boundary components are absolutely focusing.  相似文献   

17.
We study non-elastic billiard dynamics in an equilateral triangular table. In such dynamics, collisions with the walls of the table are not elastic, as in standard billiards; rather, the outgoing angle of the trajectory with the normal vector to the boundary at the point of collision is a uniform factor λ < 1 smaller than the incoming angle. This leads to contraction in phase space for the discrete-time dynamics between consecutive collisions, and hence to attractors of zero Lebesgue measure, which are almost always fractal strange attractors with chaotic dynamics, due to the presence of an expansion mechanism. We study the structure of these strange attractors and their evolution as the contraction parameter λ is varied. For λ∈(0,1/3), we prove rigorously that the attractor has the structure of a Cantor set times an interval, whereas for larger values of λ gaps arise in the Cantor structure. For λ close to 1, the attractor splits into three transitive components, whose basins of attraction have fractal boundaries.  相似文献   

18.
We describe a class of 3-dimensional regions with focusing components that generate a billiard system with non-vanishing Lyapunov exponents. To do this we answer affirmatively the long standing question whether or not the chaotic motion caused by defocusing can be produced in more than two dimensions. Received: 14 February 1996 / Accepted: 21 March 1997  相似文献   

19.
Defocusing mechanism provides a way to construct chaotic (hyperbolic) billiards with focusing components by separating all regular components of the boundary of a billiard table sufficiently far away from each focusing component. If all focusing components of the boundary of the billiard table are circular arcs, then the above separation requirement reduces to that all circles obtained by completion of focusing components are contained in the billiard table. In the present paper we demonstrate that a class of convex tables—asymmetric lemons, whose boundary consists of two circular arcs, generate hyperbolic billiards. This result is quite surprising because the focusing components of the asymmetric lemon table are extremely close to each other, and because these tables are perturbations of the first convex ergodic billiard constructed more than 40 years ago.  相似文献   

20.
We suggest that random matrix theory applied to a matrix of lengths of classical trajectories can be used in classical billiards to distinguish chaotic from non-chaotic behavior. We consider in 2D the integrable circular and rectangular billiard, the chaotic cardioid, Sinai and stadium billiard as well as mixed billiards from the Limaçon/Robnik family. From the spectrum of the length matrix we compute the level spacing distribution, the spectral auto-correlation and spectral rigidity. We observe non-generic (Dirac comb) behavior in the integrable case and Wignerian behavior in the chaotic case. For the Robnik billiard close to the circle the distribution approaches a Poissonian distribution. The length matrix elements of chaotic billiards display approximate GOE behavior. Our findings provide evidence for universality of level fluctuations—known from quantum chaos—to hold also in classical physics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号