首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The complexes M(L1, 2)2 · nH2O, where M = Co(II), Ni(II), Cu(II), and Zn; n = 2 and 3, were synthesized by the reaction of Co(II), Ni(II), Cu(II), and Zn(II) chlorides with 2,4,7-trinitro-9-fluorenone oxime (HL1) and 2,4,5,7-tetranitro-9-fluorenone oxime (HL2) and identified. It was shown that HL1, 2 were coordinated by metal cations in the anionic form in a 2: 1 ratio. A single crystal of the solvate of HL2 with acetonitrile (1: 1) HL2 · NCCH3 was isolated, and its crystal structure was determined. The spectral characteristics were determined, and the acidity constant of HL1 was calculated. The structures for the synthesized complexes were proposed.  相似文献   

2.
Heteronuclear complexes containing oxorhenium(V), with Fe(III), Co(II), Ni(II), Cu(II), Cd(II) and UO2(VI) ions were prepared by the reaction of the complex ligands [ReO(HL1)(PPh3)(OH2)Cl]Cl (a) and/or [ReO(H2L2)(PPh3)(OH2)Cl]Cl (b), where H2L1?=?1-(2-hydroxyphenyl)butane-1,3-dione-3-(5,6-diphenyl-1,2,4-triazine-3-ylhydrazone) and H3L2?=?1-(2-hydroxyphenyl)butane-1,3-dione-3-(1H-benzimidazol-2-ylhydrazone), with transition and actinide salts. Heterodinuclear complexes of ReO(V) with Fe(III), Co(II), Ni(II), Cu(II) and Cd(II) were obtained using a 1?:?1 mole ratio of the complex ligand and the metal salt. Heterotrinuclear complexes were obtained containing ReO(V) with UO2(VI) and Cu(II) using 2?:?1 mole ratios of the complex ligand and the metal salts. The complex ligands a and b coordinate with the heterometal ion via a nitrogen of the heterocyclic ring and the nitrogen atom of the C=N7 group. All transition metal cations in the heteronuclear complexes have octahedral configurations, while UO2(VI)?complexes have distorted dodecahedral geometry. The structures of the complexes were elucidated by IR, ESR, electronic and 1H NMR spectra, magnetic moments, conductance and TG-DSC measurements. The antifungal activities of the complex ligands and their heteronuclear complexes towards Alternaria alternata and Aspergillus niger showed comparable behavior with some well-known antibiotics.  相似文献   

3.
Four different types of new ligands Ar[COC(NOH)R] n (Ar=biphenyl, n = 1 H2L1; Ar=biphenyl, n = 2 H4L2; Ar=diphenylmethane, n = 1 H2L3; Ar=diphenylmethane, n = 2 H4L4; R=2-amino-4-chlorophenol in all ligands) have been obtained from 1 equivalent of chloroketooximes Ar[COC(NOH)Cl] n (HL1-H2L4) and 1 equivalent of 2-amino-4-chlorophenol (for H2L1 and H2L3) or 2 equivalent of 2-amino-4-chlorophenol (for H4L2 and H4L4). (Mononuclear or binuclear cobalt(II), nickel(II), copper(II) and zinc(II) complexes were synthesized with these ligands.) These compounds have been characterized by elemental analyses, AAS, infra-red spectra and magnetic susceptibility measurements. The ligands have been further characterized by 1H NMR. The results suggest that the dinuclear complexes of H2L1 and H2L3 have a metal:ligand ratio of 1:2; the mononuclear complexes of H4L2 and H4L4 have a metal:ligand ratio of 1:1 and dinuclear complexes H4L2 and H4L4 have a metal:ligand ratio of 2:1. The binding properties of the ligands towards selected transition metal ions (MnII, CoII, NiII, CuII, ZnII, PbII, CdII, HgII) have been established by extraction experiments. The ligands show strong binding ability towards mercury(II) ion. In addition, the thermal decomposition of some complexes is studied in nitrogen atmosphere.  相似文献   

4.
Complexation of N-(2-pyridyl)methyl-3-aminopropionic (HL1) and N-(2-pyridyl)methyliminodipropionic (H2L2) acids with copper(II), nickel(II), and cobalt(II) ions is studied. The composition of complexes is determined using the Starik–Barbanel relative yield method. The acid dissociation constants of HL1 and H2L2 are determined potentiometrically; the stability constants of HL1 and H2L2 complexes with metal ions are calculated.  相似文献   

5.
A new dioxime ligand, (2E,3E)-3-[(6-{[(1E,2E)-2-(hydroxyimino)-1-methylpropylidene]amino}-pyridin-2-yl)imino]butan-2-one oxime, (H2Pymdo) (3) has been synthesized in H2O by reacting 2,3-butenedione monoxime (2) with 2,6-diaminopyridine. Mono-, di- and tri-nuclear copper(II) complexes of the dioxime ligand (H2Pymdo) and/or 1,10-phenanthroline have been prepared. The dioxime ligand (H2Pymdo) and its copper(II) complexes were characterized by 1H-n.m.r., 13C-n.m.r. and elemental analyses, magnetic moments, i.r. and mass spectral studies. The mononuclear copper(II) complex of H2Pymdo was found to have a 1:1 metal:ligand ratio. Elemental analyses, stoichiometric and spectroscopic data of the metal complexes indicated that the metal ions are coordinated to the oxime and imine nitrogen atoms (C=N). In the dinuclear complexes, in which the first Cu(II) ion was complexed with nitrogen atoms of the oxime and imine groups, the second Cu(II) ion is ligated with dianionic oxygen atoms of the oxime groups and are linked to the 1,10-phenanthroline nitrogen atoms. The trinuclear copper(II) complex (6) was formed by coordination of the third Cu(II) ion with dianionic oxygen atoms of each of two molecules of the mononuclear copper(II) complexes. The data support the proposed structure of H2Pymdo and its Cu(II) complexes.  相似文献   

6.
Two two‐dimensional supramolecular copper(II) and cobalt(III) complexes, Cu(L1)2 ( 1 ; HL1 = 2‐hydroxy‐3‐methoxybenzaldehyde oxime) and [Co(L2)2]2⋅2CH3COOCH2CH3 ( 2 ; HL2 = 1‐(2‐{[(E )‐3‐methoxy‐2‐hydroxybenzylidene]amino}phenyl)ethanone oxime), have been synthesized via complexation of Cu(II) nitrate trihydrate and Co(II) acetate tetrahydrate with HL. A plausible reaction mechanism for the formation of HL1 is proposed. HL was synthesized and characterized using infrared, 1H NMR and 13C NMR spectra, as well as elemental analysis. Complexes 1 and 2 were investigated using single‐crystal X‐ray diffraction and have a 2:1 ligand‐to‐metal ratio. Different geometric features of both complexes are observed. In their crystal structures, 1 and 2 form infinite two‐dimensional structures and 2 forms a three‐dimensional supramolecular framework. Electron paramagnetic resonance spectra of 1 and 2 were also investigated. Moreover, thermal and electrochemical properties and antimicrobial activity of 2 were also studied. In addition, the calculated HOMO and LUMO energies show the character of complex 1 .  相似文献   

7.
Novel mononuclear oxovanadium(IV) and manganese(III) complexes [VO(L1)2·H2O] (1); [VO(L2)2·H2O] (2); [VO(L3)2·H2O] (3); [Mn(L1)2]ClO4·H2O (4); [Mn(L2)2] ClO4·H2O (5); [Mn(L3)2]ClO4·H2O (6) were prepared by condensation of 1 mol of VOSO4·5H2O or Mn(OAc)3· 2H2O with 2 mol of ligand HL1, HL2 or HL3 (where HL1 = 4-[(2-hydroxy-ethylamino)-methylene]-5-methyl-2- phenyl-2,4-dihydro-pyrazol-3-one; HL2=4-[(2-hydroxy-ethylamino)-methylene]-5-methyl-2-p-tolyl-2,4-dihydro-pyrazol-3-one; HL3=4-{4-[(2-hydroxy-ethyl-amino)-methyl]-3-methyl-5-oxo-4,5-dihydropyrazol-1-yl} benzene sulfonic acid). The resulting complexes were characterized by elemental analyses, molar conductance, magnetic and decomposition temperature measurements, electron spin resonance, FAB mass, IR and electronic spectral studies. From TGA, DTA and DSC, the thermal behaviour and degradation kinetic were studied. Electronic spectra and magnetic susceptibility measurements indicate distorted octahedral stereochemistry of oxovanadium(IV) complexes and regular octahedral stereochemistry of manganese(III) complexes. Hamiltonian and bonding parameters found from ESR spectra indicate the metal ligand bonding is partial covalent. The X-ray single crystal determination of one of the representative ligand was carried out which suggests existence of amine-one tautomeric form in the solid state. The 1H-NMR spectra support the existence of imine-ol form in solution state. The LC-MS studies sustain the1H-NMR result. The electronic structure of the same representative ligand was optimized using 6-311G basis set at HF level ab initio studies to predict the coordinating atoms of the ligand.  相似文献   

8.
Four Cd-based complexes with chemical formulae [Cd(L1)2(2,2'-Bipy)(H2O)] (I), [Cd(L2)2(2,2'-Bipy) · 2H2O] (II), [Cd(L1)2(Phen)(H2O)] (III), {[Cd(L1)2(H2O)(4,4'-Bipy)] · 3H2O} (IV) (HL1 = 3-(4-hydroxyphenyl)propanoic acid, HL2 = p-hydroxyphenylacetic acid, Phen = phenantroline), have been synthesized and structurally characterized (CIF file CCDC nos. 1044844 (I), 1044844 (II), 1044844 (III), 1044847 (IV)). Single-crystal X-ray analyses reveal that compounds I and III have mononuclear Cd(II) units linking by three carboxylate groups, complex II shows dinuclear motif, whereas IV exhibits 1D chain constructed by bridging 4,4'-Bipy ligand. The assistant effect of chelating N-donor ligands with 2,2'-Bipy and Phen bind and bridging 4,4'-Bipy, as well as the flexibility of carboxylate, play an important to modulate on the resulting motifs. The detailed analyses of Hirshfeld surface and fingerprint plots provide insight into the nature of non-covalent interactions in the title compounds. Furthermore, the luminescent properties of the all compounds were discussed in detail.  相似文献   

9.
Two Schiff bases, 1-acetylferrocene thiosemicarbazone (HL1) and 1,1′-diacetyl-ferrocene dithiosemicarbazone (H2L2) and their copper(II) complexes were prepared and characterized by elemental analysis, magnetic susceptibility, conductivity, and spectral (IR, UV–Vis, ESR) measurements The IR spectra showed that HL1 acts as neutral or monobasic bidentate ligand, coordinating to copper(II) through either thiono- or thiolo-sulphur and azomethine-N atoms, whereas H2L2 is a neutral or dibasic mononucleating or binucleating quadridentate ligand coordinating through the same atoms. Other spectral measurements indicate that complexes [(L1)2Cu], [(L2)Cu] and [(HL1)2Cu]X2, X?=?Cl, Br or ClO4 have square-planar geometry around copper(II) while [(HL1)CuX2] and [(H2L2)Cu2X4], X?=?Cl or Br, have distorted tetrahedral geometry. The biological activity studies of the complexes and the free ligands towards two gram positive and two gram negative bacteria and one fungal species have been studied and the potential is related to the nature and structure of the tested compounds.  相似文献   

10.
A new ligand incorporating a dioxime moiety, (2E,3E)-3-[(2-{[(1E,2E)-2-(hydroxyimino)-1-methylpropylidene]amino}phenyl)imino]butan-2-one oxime, (H2Phmdo) (3) has been prepared by reacting 2,3-butanedionemono-{O-[4-(1-methyl-2-oxo-propylideneaminooxy)-2,3-bis-(1-methyl-2-oxo-propylideneaminooxy-methyl)-but-2-enyl]-oxime} (2) with 1,2-phenylenediamine. Mono-, di- and trinuclear copper(II) and/or nickel(II) complexes of H2Phmdo were characterized by elemental analyses, magnetic moments, 1H-n.m.r. and 13C-n.m.r., i.r. and mass spectral studies. The mononuclear copper(II) and nickel(II) complexes of H2Phmdo were found to have a 1:1 metal:ligand ratio. Elemental analyses, stoichiometric and spectroscopic data of the metal complexes indicated that the metal ions are coordinated to the oxime and imine nitrogen atoms (C=N). In the dinuclear complexes, in which the first Cu(II) or Ni(II) ion was complexed with nitrogen atoms of the oxime and imine groups, the second Cu(II) ion is ligated with dianionic oxygen atoms of the oxime groups and are linked to the 1,10-phenanthroline nitrogen atoms. The data support the proposed structure of H2Phmdo and its complexes.  相似文献   

11.
A new binucleating ligand incorporating four oxime groups, butane-2,3-dione O-[4-aminooxy-2,3-bis-(2-hydroxyimino-1-methyl-propylideneaminooxymethyl)-but-2-enyl]-dioxime, (H4mto), has been synthesized and its dinuclear cobalt(III), copper(II), and homo- and hetero-tetranuclear copper(II)–manganese(II) complexes have been prepared and characterized by 1H- and 13C-n.m.r., i.r., magnetic moments and mass spectral studies. Elemental analyses, stoichiometric and spectroscopic data indicate that the metal ions in the complexes are coordinated to the oxime nitrogen atoms (C=N) and the data support the proposed structure for H4mto and its complexes. Moreover, dinuclear cobalt(III) and copper(II) complexes of H4mto have a 2:1 metal:ligand ratio.  相似文献   

12.
An unexpected polyhydroxyl‐bridged tetranuclear ZnII complex and a benzoquinone compound derived from metal‐ion promoted reactivity of Schiff base ligands were synthesized and characterized. The reaction of zinc(II) acetate dihydrate with oxime‐type Schiff base ligand HL1 [HL1 = 1‐(3‐((3,5‐dibromosalicylaldehyde)amino)phenyl)ethan‐1‐one O‐benzyl oxime] in methanol, acetone, and acetonitrile resulted in the chemoselective cleavage of the C=N bond of the Schiff base HL1, and then the further addition of acetone to two salicylaldehyde molecules derived from cleavage of the C=N bond in situ α,α double aldol reaction promoted by ZnII ions. The newly formed ligands H4L2 coordinate to four ZnII ions forming a defect‐dicubane core structure [ZnII4(H2L2)23‐OCH3)2(μ‐OCH3)2(CH3OH)2] ( 1 ) bridged exclusively by oxygen‐based ligands. The similar ligand HL3 [HL3 = 1‐(3‐((3,5‐dichlorosalicylaldehyde)amino)phenyl)ethan‐1‐one O‐benzyl oxime)] was employed to react with CdII acetate dihydrate under the same reaction conditions. No aldol addition occurred but a unexpected benzoquinone compound 2,5‐bis(((3‐(1‐((benzyloxy)imino)ethyl)phenyl)imino)methyl)‐1,4‐benzoquinone ( 2 ) formed. The results provided interesting insights into one‐pot routes involving in situ reactions act as a strategy for obtaining a variety of polymeric/polynuclear complexes which are inconvenient to obtain from directly presynthesizing the ligands.  相似文献   

13.
Azo Schiff base ligand 2-hydroxy-3-methoxy-5-(tolyldiazenyl)benzaldehyde oxime (HL1) and 2-hydroxy-3-methoxy-5-(methoxyphenyl)benzaldehyde oxime (HL2) were prepared along with their transition metal complexes of Ni(II), Cu(II), and Zn(II). Ligands and their metal complexes were characterized by several analysis techniques. In- vitro antibacterial, antioxidant and anti-inflammatory activities of synthesized ligands and their metal complexes have been studied. Biological study showed that amongst all the synthesized compounds, Cu(II) complexes possessed excellent antibacterial activity than standard antibiotic Chloramphenicol. Ligands (HL1) and (HL2) showed excellent antioxidant as well as anti-inflammatory activity. Both the ligands were tested for their protective effect of free radicals against plasmid DNA and it was found that both the ligands showed good DNA nicking activity.  相似文献   

14.
A new ligand incorporating a dioxime moiety, 3-{2-[2-(2-hydroxyimino-1-methylpropylideneamino)ethylamino]ethylimino}butan-2-one oxime, (H2mdo), has been synthesized and its mono-, di- and trinuclear copper(II), and hetero-dinuclear copper(II)–manganese(II) complexes have been prepared and characterized by elemental analyses, magnetic moments, 1H- and 13C-n.m.r., i.r. and mass spectral studies. A mononuclear copper(II) complex of H2mdo was found to have a 1:1 metal:ligand ratio. Elemental analyses, stoichiometric and spectroscopic data of the metal complexes indicated that the metal ions are coordinated to the oxime and imine nitrogen atoms (C=N); the data support the proposed structure of H2mdo and its complexes.  相似文献   

15.
Mononuclear oxorhenium(V) complexes [ReO(HL1 or H2L2)(PPh3)(OH2)Cl]Cl, {H2L1 = 1-(2-hydroxyphenyl)butane-1,3-dione-3-(5,6-diphenyl-1,2,4-triazine-3-ylhydrazone) and H3L2 = 1-(2-hydroxyphenyl)butane-1,3-dione-3-(1H-benzimidazol-2-ylhydrazone)}, have been synthesized by ligand exchange with trans-trichloromonooxo-bis(triphenylphosphine) rhenium(V). The reaction of a 1?:?1 mixture of either NH4SCN, 1,10-phenanthroline (1,10-phen) or 8-hydroxyquinoline (8-OHquin) and H2L1 or H3L2, with trans-ReOCl3(PPh3)2 yielded the mononuclear oxorhenium(V) complexes, [ReO(HL1 or H2L2)(PPh3) (SCN)Cl], [ReO(HL1)(1,10-phen)Cl]Cl, [ReO(H2L2)(1,10-phen)(OH2)]Cl2·H2O and [ReO(HL1 or H2L2) (8-Oquin)Cl]. Thermal studies on these complexes showed structural transformations from mononuclear into binuclear complexes. [Re2O3(HL1 or H2L2)2(PPh3)2Cl2], [Re2O2(μ-L1 or L2)2(SCN)2] and [Re2O3 (H2L2)2(1,10-phen)2]Cl2, were synthesized pyrolytically in the solid state from the respective precursor rhenium complexes. The structures of all complexes and the corresponding thermal products were elucidated using elemental analyses, conductance, IR and electronic absorption spectra, magnetic moments and 1H NMR and TG-DSC measurements. The prepared complexes and their thermal products have octahedral configurations. The ligands H2L1 or H3L2 behave as monoanionic bidentate or monoanionic tetradentate ligands towards the oxorhenium ions. The antifungal activities of the metal complexes towards Alternaria alternata and Aspergillus niger were tested and showed comparable behavior with well known antibiotics.  相似文献   

16.
Two new Cu(II) complexes, [Cu(L1)2] (1) and [Cu(L2)2] (2) (HL1 = (E)-3-bromo-5-chloro-2-hydroxy benzaldehyde O-methyl oxime; HL2 = (E)-3-bromo-5-chloro-2-hydroxy benzaldehyde O-ethyl oxime), have been synthesized and characterized by physicochemical and spectroscopic methods. X-ray crystallographic analyses show that complexes 1 and 2 have similar structures, consisting of one Cu(II) atom and two L units. In both complexes, the Cu(II) atom, lying on an inversion center, is four-coordinated in a trans-CuN2O2 square-planar geometry by two phenolate O and two oxime N atoms from two symmetry-related N,O-bidentate oxime ligands. Moreover, both complexes form an infinite three-dimensional supramolecular structure involving intermolecular C–H···Br hydrogen bonds and π···π stacking interactions between the metal chelate rings and aromatic rings. Substituent effects in the two complexes are discussed.  相似文献   

17.
Synthesis of four different types of ligands Ar[COC(NOH)R] n (Ar = biphenyl, n = 1, HL1; Ar = biphenyl, n = 2, H2L2; Ar = diphenylmethane, n = 1, HL3; Ar = diphenylmethane, n = 2, H2L4; R = furfurylamine in all ligands) and their dinuclear Co2+, Ni2+, Cu2+, and Zn2+ complexes is reported herein. These compounds were characterized by elemental analysis, ICP-OES, FT-IR spectra, and magnetic susceptibility measurements. The ligands were further characterized by 1H NMR. The results suggest that dinuclear complexes of HL1 and HL3 have a metal to ligand mole ratio of 2: 2 and dinuclear complexes H2L2 and H2L4 have a metal to ligand mole ratio of 2: 1. Square pyramidal or octahedral structures are proposed for complexes of oxime ligands. Furthermore, extraction abilities of the four ligands were also evaluated in chloroform using selected transition metal picrates such as Mn2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Hg2+, Pb2+. The ligands show strong binding ability towards Hg2+ and Cu2+ ions.  相似文献   

18.
The paper describes the results of differential thermal analysis of the octahedral Fe(III) complexes of the general formula [Fe(HLn)2]Cl and Fe(HL3)L3, as well as of the corresponding ligands H2Ln (H2Ln — tridentate salicylaldehyde semi thiosemi- and S-methylisothiosemi-carabazones with n=1, 2 and 3 respectively). The decomposition of the complexes involving sulphur-containing ligands (H2L2 and H2L3) starts with sulphur elimination. In case of the complexes [Fe(HL2)]Cl and [Fe(HL3)]Cl sulphur evolves independently, whereas with Fe(HL3)L3 it is eliminated within the SCH3 group. In the former case, sulphur elimination takes place at the same temperature for both complexes. The change in the coordination mode, being a consequence of the replacement of O by S, has no essential effect on thermal stability of the coordination polyhedron. The complexes involving ONN coordination, realized with the H2L3 ligand, exhibit a comparatively highest thermal stability of the coordination polyhedron.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

19.
In the current work, two triazine‐based multidentate ligands (H2L1 and H2L2) and their homo‐dinuclear Mn (II), mononuclear Ln (III) and hetero‐dinuclear Mn (II)/Ln (III) (Where Ln: Eu or La) complexes were synthesized and characterized by spectroscopic and analytical methods. Single crystals of a homo‐dinuclear Mn (II) complex {[Mn (HL1)(CH3OH)](ClO4·CH3OH}2 ( 1 ) were obtained and the molecular structure was determined by X‐ray diffraction method. In the structure of the complex, each Mn (II) ion is seven‐coordinate and one of the phenolic oxygen bridges two Mn (II) centre forming a dimeric structure. The UV–Vis. and photoluminescence properties of synthesized ligands and their metal complexes were investigated in DMF solution and the compounds showed emission bands in the UV–Vis. region. The catecholase enzyme‐like activity of the complexes were studied for 3,5‐DTBC → 3,5‐DTBQ conversion in the presence of air oxygen. Homo‐dinuclear Mn (II) complexes ( 1 and 4 ) were found to efficiently catalyse 3,5‐DTBC → 3,5‐DTBQ conversion with the turnover numbers of 37.25 and 35.78 h?1 (kcat), respectively. Mononuclear Eu (III) and La (III) complexes did not show catecholase activity.  相似文献   

20.
Summary Copper(II), nickel(II) and cobalt(II) perchlorate complexes of 5,5-dimethylcyclohexane-1,2,3-trione-2-(p-nitrophenyl-hydrazone) (HL1), 5,5-dimethyl-cyclohexane-1,2,3-trione-2-(p-chlorophenylhydrazone) (HL2), 5,5-dimethylcyclohexane-1,2,3-trione-2-(o-chlorophenylhydrazone) (HL4), 5,5-dimethylcyclohexane-1,2,3-trione-2-(o-methylphenyl-hydrazone) (HL5) and 5,5-dimethylcyclohexane-1,2,3-trione-2-(m-methylphenylhydrazone) (HL6) have been prepared, and characterized using analytical, spectral and magnetic measurements. The data reveal that the reaction of Cu(ClO4)2 (1 mol) in EtOH, with all ligands, produces complexes of the type CuL(ClO4)(H2O).nH2O. Nickel(II) and cobalt(II) perchlorates react only with HL1 and HL2 to produce the complexes ML(ClO4)(H2O)3 (where M = NiII, L = L and L2, M = CoII, L = L1) and Co(HL2)2-(ClO4)2.2H2O. The spectral data show that the ligands behave as monobasic bidentate in their azo forms, except HL2 which reacts with cobalt(II) as a neutral bidentate ligand in its hydrazone form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号