首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polarized Raman spectra were obtained in the quasi-one-dimensional conductor (TaSe4)2I above and below the charge-density-wave (CDW) transition temperature (Tc=263 K). The Raman intensities of many peaks become intenser and two of the phonon peaks shift to higher frequency with decreasing temperature. Moreover a new broad peak at about 90 cm?1 and a new peak around 166 cm?1 appear in the low-temperature phase. The polarization characteristic shows that the former is assigned to totally symmetric mode. The damping constant of the phonon at 90 cm?1 increases markedly with increasing temperature. The frequency shifts to higher frequency as the temperature increases and the coupling coefficient is approximately proportional to (Tc?T)12. This peak becomes Raman active owing to the CDW phase transition. The temperature dependence of the damping constant and the frequency shift may have a relation to the dynamical properties of the CDW phase transition.  相似文献   

2.
Raman scattering was applied to study the high-temperature phase transition (near 175°C) in KH2PO4. Drastic temperature-dependent changes were observed to take place in the normal modes of B1 symmetry between 1000–3400 cm?1. The disintegration of the dominant broad feature near 2500 cm?1 when temperature rises beyond 150°C suggests that the alteration of the hydrogen-bond network is closely connected with this high-temperature phase transition.  相似文献   

3.
Raman scattering experiments on K2Pt(CN)4Br0.3 · 3H2O are reported between 5 and 300 K as a function of temperature. A line of A1 symmetry detected at 44 cm?1 shows interesting temperature dependent properties. It is concluded from a comparison of the frequency, symmetry, and scattering intensity of this line with theoretical predictions that the excitation concerned represents the amplitude mode of the charge density wave (the line observed in infrared absorption being the phase mode). No Peierls transition is observed, but the results are consistent with a Peierls distortion present at all temperatures. The findings are correlated with inelastic neutron scattering and infrared studies. Finally, the CN stretching modes at 2189 and 2173 cm?1 and the water mode at 3490 cm?1 are studied as a function of temperature.  相似文献   

4.
Raman spectroscopy experiments were performed on antiferromagnetic siderite (natural FeCO3). Weak lines at room temperature (in addition to the expected vibrational lines) were found to be seven well defined excitations at liquid helium temperature. Polarization tensor components of these new lines were examined at temperatures varying between room and liquid helium temperature. Frequency decreases upon cooling were observed for three of the lines (the greatest change occuring near the Néel temperature, 38 K). By comparison with infrared spectra, variable temperature Raman spectra and impurity analysis of two related crystals (antiferromagnetic MnCO3 and CaMg(CO3)2 containing 6% iron), new explanations for two (741 and 1735 cm?1) of three previously observed lines and for one (870cm?1) of the remaining four are presented. The three variable frequency lines (440,1175 and 1225 cm?1) are considered magnetic excitations between trigonal field, spin-orbit, and exchange split states of the ferrous ion. The frequency decreases upon cooling may be due to unquenched orbital angular momentum resulting in an exchange interaction of a non-Heisenberg form. Symmetry distortion due to magnetic ordering upon cooling may cause the infrared 741 cm?1 vibration to become Raman-active.  相似文献   

5.
Raman scattering measurements performed between 5 K and 300 K on 2H-TaSe2 reveal new modes which are assigned to the modes of the charge density wave, observed in light scattering due to the Fermi surface induced distortion. The mode at 49 cm?1 of E2g symmetry softens (with concurrent line-width broadening) towards 122 K, the transition temperature from the incommensurate distorted to the undistorted phase. The mode at 82 cm?1 of A1g symmetry appears to be connected with the transition at 90 K from the commensurate to the incommensurate superstructure. The mode at 24.5 cm?1 of E2g shows no temperature dependence and is clearly due to the rigid-layer vibration.  相似文献   

6.
We have reported the Raman scattering and infrared absorption results on a t2g orbital ordered Ca2RuO4. At 10 K, a strong and clear peak was observed in Raman scattering near 1360 cm−1 with xx′ geometry. In contrast to optic phonon modes, the peak does not show any frequency shift but rapidly decreases with increasing temperature. In addition, the peak is not observed in infrared absorption measurement. By comparing the previous Raman scattering results for several transition metal oxides, we have discussed the possible origins and ambiguities of the intriguing peak in Ca2RuO4.  相似文献   

7.
Polycrystalline Bi4Ti3O12 thin films were prepared on quartz substrates by pulsed laser deposition. The films were crystallized in the orthorhombic layer perovskite structure confirmed by X-ray diffraction and Raman spectroscopy. The Raman spectra are strongly dependent on temperature. A subtle phase transition in the temperature range 473-573 K exists in polycrystalline BTO thin films, which is evidenced by the disappearance of the Raman band at 116 cm−1 and appearance of a new Raman band at 151 cm−1. The two broad Raman bands centered at the 57 and 93 cm−1 at 300 K break up into clusters of several sharp Raman peaks at 77 K, due to monoclinic distortion of orthorhombic structure at low temperature in the as-prepared Bi4Ti3O12 thin films.  相似文献   

8.
Raman spectra of anatase have been investigated under pressures up to 60 kbar and at room temperature. A pressure-induced phase transition is observed at pressures above 25.6 kbar. The 197 cm-1 mode (at 1 atm.) of six Raman active modes exhibits anomalous pressure dependence in which the frequency decreases with increasing pressure. This mode may be significant in the phase transition. The remaining modes show usual behavior.  相似文献   

9.
The crystals of the system Ti1?xVxSe2 (C ≤ x ≤ 0.05) undergo a second order structural phase transition. Electron diffraction studies show that the transition temperature decreases with progressive V-doping. The phase transition considerably affects the infrared reflectivity, measured at 300 and 77 K in the spectral range 40 cm?1 to 4000 cm?1.The presence of free carriers and the existence of optical infrared active Eu phonon modes (Ec) confer their characteristic appearance to the spectra. At room temperature one phonon structure is measured at 143 cm?1. At 77 K a new series of phonon peaks appears up to a V-concentration of 5 % as a direct consequence of superlattice formation.At room temperature the plasma-edge shifts towards higher frequencies as the vanadium concentration increases. This effect is caused by a large increase of Nm1, associated with the mixing of impurities. It is indicative of the small density of states at the Fermi level in semimetallic TiSe2. Our results suggest a phase transition driven by lattice dynamical effects.  相似文献   

10.
A Raman scattering investigation of magnetic US3 has been made from 7 to 300 K. Comparison of room temperature spectra with those of the non magnetic isostructural sulfide HfS3 allowed the assignment of most of the lines to = 0 optical phonons. Drastic changes take place in the 10?150 cm?1 range when lowering the temperature down to 7 K : four equally spaced lines appear at 54, 72.5, 91 and 109.5 cm?1. Three of them broaden significantly with increasing temperature and disappear near 50 K, at which previous measurements indicate a maximum in the magnetic susceptibility and suggest a magnetic phase transition. The stronger fourth line is still observed at 100 K and merges into a phonon line at higher temperature. These four lines are attributed to electronic transitions within the 5f2 configuration of U4+. Their temperature dependences appear to involve a spin-dependent scattering mechanism and are consistent with antiferromagnetic ordering.  相似文献   

11.
Si/SiO2 superlattices were prepared by magnetron sputtering, and the deposition temperature and annealing temperature had a great influence on the superlattice structure. In terms of SEM images, the mean size of Si nanocrystals annealed at 1100 °C is larger than that of nanocrystals annealed at 850 °C. It was found that the films deposited at room temperature are amorphous. With increasing deposition temperature, the amorphous and crystalline phases coexist. With increasing annealing temperature, the Raman intensity of the peak near 470 cm−1 decreases, and the intensity of that at 520 cm−1 increases. Also, on increasing the annealing temperature, the Raman peak near 520 cm−1 shifts and narrows, and asymmetry emerges. A spherical cluster is used to model the nanocrystals in Si/SiO2 superlattices, and the observed Raman spectra are analyzed by combining the effects of confinement on the phonon frequencies. Raman spectra from a variety of nanocrystalline silicon structures were successfully explained in terms of the phonon confinement effect. The fitted results agreed well with the experimental observations from SEM images.  相似文献   

12.
The absorption spectra of C6H6 and C6D6 in the liquid phase have been studied near 340 nm. The absorption spectrophotometric mounting was a sequential double-beam attachment with linear response to energy on scanning of the spectrum before the exit slit and an electronic device which gives directly either the absorbance or the integrated absorbance of a transition and, consequently, its oscillator strength.The oscillator strength measured for the band of C6H6 is 8×10?8, which corresponds to a dipole moment of 2.4×10?3 Debye; this value is of the same order as a theoretical value calculated by Tsubomura and Mulliken (3.8×10?3 Debye) for a transition between states 3F and 3A of an oxygen-benzene pair. This agreement corroborates the hypothetical existence of such a transition.The first vibrational band is at 28553 cm?1 for C6H6; this band is not observed in the vapor or solid phase. It corresponds probably to the transition 0-0, which is considered in the literature to be near 29500 cm?1. The isotopic shift measured for this first band is 164 cm?1. The vibrational frequencies are, respectively, 910 cm?1 for C6H6 and 889 cm?1 for C6D6.  相似文献   

13.
Influence of magnetic annealing at 823 K up to 10 T (T) on the phonon behaviors of nanocrystalline BiFeO3 was investigated by Raman spectroscopy. The frequencies of fundamental Raman modes increase obviously with increasing annealing magnetic field, and the intensity of the 1260 cm−1 two-phonon mode decreases. The pronounced anomalies of Raman phonon modes under magnetic annealing are attributed to the change of the spin-phonon coupling due to the modulation of spiral spin order. Furthermore, the temperature dependence of Raman peak positions, for the two prominent modes (147 and 176 cm−1), show no notable anomaly around TN except the sample annealed under 10 T magnetic field; meanwhile, in this sample, another obvious phonon anomaly occurs at ∼150 K (another magnetic phase transition point), which indicate that stronger magnetic annealing with 10 T intensely enhances the spin-phonon coupling, and possibly increases magnetoelectric coupling of nanocrystalline BiFeO3 due to severely modulation of spiral spin order.  相似文献   

14.
Raman scattering from magnons has been observed in the three magnetic phases of CsCoBr3. In the 1-D Ising phase T > 28K a broad band at 96 cm?1 is observed. This band grows in intensity but shows little renormalisation (100.5 cm?1 at 14K) in the partially disordered antiferromagnetic phase 14K < T < 28K. For T < 14K additional structure at 111.5, 123.5, 133, and 141 cm?1 is attributed to magnon-magnon combination bands. Two extra magnon branches are expected for this ferrimagnetic phase. One of these has an energy of ≈ 11 cm?1.  相似文献   

15.
Raman measurements of the superionic conductor KAg4I5 are reported between 77K and 296K and compared to similar data of RbAg4I5. The mode frequencies for the two materials are very similar and a mode at 22.7 cm?1 abruptly and reversibly disappears at the transition temperature, Tc=137 K, as is observed in RbAg4I5, at 121 K.  相似文献   

16.
We report the low frequency Raman behaviour of KNbO3 at the orthorombic-rombohedral structural transition. Our measurements suggest that the 50 cm?1 quasimode peak may be attributed to the one phonon density of states triggered to a second order event by a slow fluctuation.  相似文献   

17.
Raman measurements between 77°K and 296°K are reported for the superionic conductor RbAg4I5. Careful attention is paid to the temperature region of the two phase transitions at 121°K and 208°K. We can detect no shifts in any of the numerous phonon modes except one at 22.9 cm-1, which abruptly and reversibly appears in the lowest temperature phase. Raman results for the isomorphic material KAg4I5 are the same with the same mode appearing in the low temperature phase. Thus, the results in these systems are markedly different from those in AgI, where there are very large changes at the superionic conducting transition temperature.  相似文献   

18.
We have observed the anomalous temperature dependence of the phonon modes in the Raman spectra of Bi2Ti4O11 and the modified Bi2Ti4O11 with the dopant of PbO. The square of the lowest mode frequency in both substances decreases linearly with increasing temperature, while the damping constant increases reaching a peak value at the transition temperature. The mode frequency, however, does not tend to zero but stays finite and the damping constant decreases above the transition temperature. The mode is Raman-active both above and below the transition temperature.  相似文献   

19.
The temperature dependence of the photoluminescence spectra of the relaxor ferroelectric Pb(Mg1/3Nb2/3)O3 has been reported. The temperature behaviours of the 1.57, 1.67 and 1.73 eV bands indicate a phase transition at 110 K. This is attributed to a structural phase transition in the charged nanoshell. Analysis of the temperature dependence of 1.67 eV band intensity with a thermal quenching model indicated the existence of a phonon mode at 1153 cm−1. This mode is identified in the Raman spectra measurement. The intensity of the 1.73 eV band showing an anomalous behaviour at 210 K is attributed to a transition from a crystalline phase to an amorphous phase in the charged nanoshell.  相似文献   

20.
Raman spectra of the SrTiO3 crystal have been measured in wide temperature (22?C316 K) and frequency (2?C1020 cm?1) ranges. It has been shown that a central peak appears in low-frequency Raman spectra at temperatures above 70 K. In the spectral geometry with polarization rotation near the temperature T c = 106 K of the cubic-to-tetragonal phase transition, the central peak exhibits properties of the order-disorder phase transition. Such a behavior of the central peak has been explained by the interaction of the low-frequency soft mode E g with the relaxation mode near T c .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号