首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Zuo Xiaoxi 《Optik》2005,116(7):361-364
Fe:LiNbO3 and In:Fe:LiNbO3 crystals were grown by Czochralski method. The absorption spectra were measured to investigate their defect structure. The photo damage resistance and photorefractive properties were measured. The photo damage resistance of the In:Fe:LiNbO3 crystal in which the In concentration is above the threshold value is one order of magnitude higher than that of the Fe:LiNbO3 crystal. The mechanisms of the violet shift of the absorption edge and the enhancement of the photorefractive effect of In:Fe:LiNbO3 crystals were investigated.  相似文献   

2.
Mg2+对Fe:LiNbO3晶体光折变响应时间的影响   总被引:3,自引:3,他引:0  
王锐  赵朝中等 《光子学报》2001,30(11):1307-1309
在Fe:LiNbO3中掺进3mol%和6mol%MgO,生长了Mg:Fe:LiNbO3晶体.测试了Mg:Fe:LiNbO3晶体抗光致散射能力、衍射效率、响应时间和光电导.推导响应时间与光电导之间的关系.在Fe:LiNbO3晶体中掺进6mol%的Mg2+,它的抗光致散射能力比Fe:LiNbO3晶体提高一个数量级,响应速度比Fe:LiNbO3晶体提高四倍.  相似文献   

3.
We use holographic techniques for the investigation of strongly oxidized LiNbO3:Fe crystals with small Fe2+ concentrations and compare the results with theoretical predictions. Experimental evidence is presented for enhanced phase shifts between light intensity pattern and refractive index grating and for limitations of optically induced space charge fields in photovoltaic crystals due to the low concentration of filled traps. Our findings do not support the model of a nonlocal photovoltaic effect in LiNbO3.  相似文献   

4.
Doping MgO, MnO and Fe2O3 in LiNbO3 crystals, tri-doped Mg:Mn:Fe:LiNbO3 single crystals were prepared by the conventional Czochralski method. The UV-vis absorption spectra were measured and the shift mechanism of absorption edge was also investigated in this paper. In Mg:Mn:Fe:LiNbO3 crystal, Mn and Fe locate at the deep level and the shallow level, respectively. The two-photon holographic storage is realized in Mg:Mn:Fe:LiNbO3 crystals by using He-Ne laser as the light source and ultraviolet as the gating light. The results indicated that the recording time can be significantly reduced for introducing Mg2+ in the Mg:Mn:Fe:LiNbO3 crystal.  相似文献   

5.
Mg:Fe:LiNbO3晶体的生长及光学性能研究   总被引:6,自引:6,他引:0  
在Fe:LiNbO3中掺进MgO和Fe2O3以提拉技术生长Mg:Fe:LiNbO3晶体.对晶体进行极化和还原处理.测试晶体的吸收光谱,Mg:Fe:LiNbO3晶体吸收边相对Fe:LiNbO3晶体发生紫移.测试晶体的红外光谱,Mg:(5 mol%)Fe:LiNbO3晶体OH-吸收峰由Fe:LiNbO3晶体的3482 cm-1移到3534 cm-1.采用锂空位模型阐述Mg:Fe:LiNbO3晶体,吸收边和OH-吸收峰移动的机理.测试晶体的抗光致散射能力.Mg:(5 mol%)Fe:LiNbO3晶体抗光致散射能力比Fe:LiNbO3晶体提高一个数量级以上.测试晶体的衍射效率和响应时间.Mg:Fe:LiNbO3晶体响应速度比Fe:LiNbO3晶体提高四倍.  相似文献   

6.
Using methods of electronic spectroscopy, laser conoscopy, photoinduced (photoreactive) light scattering, and Raman light-scattering spectroscopy, we have studied the optical homogeneity, optical transmission, and photorefractive properties of single crystals LiNbO3:Mg(5.21 mol %) and LiNbO3:Fe(0.009 mol %):Mg(5.04 mol %) that were grown from congruent melts. We have ascertained that doping with “nonphotorefractive” Mg2+ cations causes suppression of the photorefractive effect in a lithium-niobate crystal. Upon double doping (Fe:Mg), if the concentration of Mg2+ cations exceeds the threshold concentration, the photorefractive effect is almost not observed and the presence of “photorefractive” Fe cations does not affect the photorefractive effect as strongly as in congruent crystals doped with Fe.  相似文献   

7.
A series of Hf:Fe:LiNbO3 crystals were grown by the Czochralski technique with various doping concentrations of HfO2. Their defect structures were analyzed by the UV-visible absorption spectra and infrared absorption spectra. The optical damage resistance of Hf:Fe:LiNbO3 crystals was measured by the photo-induced birefringence change and the transmitted light spot distortion method. The results show that the optical damage resistance ability of Hf:Fe:LiNbO3 crystals enhances remarkably with the HfO2 concentration increasing when the HfO2 concentration is lower than its threshold concentration (4 mol%). However, when the HfO2 concentration exceeds its threshold concentration, the optical damage resistance ability of the crystals returns to decrease. This unusual behavior is explained by using the photovoltaic field produced in the crystals.  相似文献   

8.
Xihe Zhen  Qiang Li 《Optik》2005,116(4):149-152
The new non-volatile holographic storage materials, Zn:Mn:Fe:LiNbO3 crystals, were prepared by Czochralski technique. Their microstructure was measured and analyzed by infrared (IR) transmission spectra. The optical damage resistance of Zn:Mn:Fe:LiNbO3 crystals was characterized by the transmitted beam pattern distortion method. It increases remarkably when the concentration of ZnO is over a threshold concentration. Its value in Zn(7.0 mol%):Mn:Fe:LiNbO3 crystal is about three orders of magnitude higher that in Mn:Fe:LiNbO3 crystal. The photoinduced birefringence change was measured by the Sénarmont's method. It decreased with ZnO concentration increasing. The dependence of the defects on the optical damage resistance was discussed.  相似文献   

9.
The nonvolatile photorefractive characteristics of LiNbO3:Fe:Cu and In-doped LiNbO3:Fe:Cu crystals are investigated. The stronger nonvolatile blue photorefraction observed can be ascribed to its remarkable characteristic of being in phase between the two gratings recorded in shallow and deep trap centers, which is one or two orders of magnitude higher than those obtained in conventional two-color recordings under the same recording conditions. Furthermore, it is interesting that, compared with LiNbO3:Fe:Cu, the recording properties, such as the saturation refractive index change, nonvolatile sensitivity and response time at 488 nm wavelength are enhanced in LiNbO3:In:Fe:Cu crystals under the same recording conditions. The so-called damage-resistant dopants such as In3+ ions in red photorefraction are not damage resistant at 488 nm wavelength but they enhance the blue photorefraction. PACS  42.40.Ht; 42.40.Lx; 42.70.Ln  相似文献   

10.
Shuangquan Fang 《Optik》2006,117(2):72-76
Mg, Fe double-doped LiTaO3 and LiNbO3 crystals have been grown by Czochralski method. The optical properties were measured by two-beam coupling experiments and transmitted facula distortion method. The results showed that the photorefractive response speed of Mg:Fe:LiTaO3 was about three times faster than that of Fe:LiTaO3, whereas the photo-damage resistance was two orders of magnitude higher than that of Fe:LiTaO3. In this paper, site occupation mechanism of impurities was also discussed to explain the high photo-damage resistance and fast response speed in Mg:Fe:LiTaO3 crystal.  相似文献   

11.
Time-resolved light-induced birefringence measurements based on a phase compensation technique are used to determine the charge transport properties of congruent, nominally-undoped lithium niobate crystals (LiNbO3). Some of the crystals are conventionally oxidized. The steady-state space-charge field E pv, the bulk photovoltaic coefficient β, and the photoconductivity σ ph are determined in the intensity range (30–30 000) W/cm2. The photovoltaic coefficient β increases by one order of magnitude over this intensity range, the space-charge field E pv even by two orders of magnitude. We discuss the results in the context of the known one- and two-center charge transport models for LiNbO3. The experimental findings presented here are of relevance for the long-standing problem of optical damage in such crystals, which inhibits their use in high-intensity applications like nonlinear optics.  相似文献   

12.
A series of Zn:Fe:LiNbO3 crystals were prepared by the Czochralski technique with 0.015 wt. % Fe2O3 content and various concentrations of ZnO. The ultraviolet-visible absorption spectra and the infrared absorption spectra of the Zn:Fe:LiNbO3 crystals were detected in order to investigate their defect structure. Their optical damage resistance was characterized by the photoinduced birefringence change and transmission facula distortion method. The optical damage resistance of the Zn:Fe:LiNbO3 crystals increases remarkably when the concentration of ZnO is over its threshold concentration (more than 6.0 mol. %). The effects of defects on the optical damage resistance of the Zn:Fe:LiNbO3 crystals are discussed in detail. Received: 25 October 2002 / Revised version: 6 January 2003 / Published online: 22 May 2003 RID="*" ID="*"Corresponding author. Fax: +86-451/2300-926, E-mail: zzxxhhdoctor@sina.com  相似文献   

13.
We studied the visible and IR dispersion of absorption coefficient and refractive index for congruent LiNbO3 and Mg:LiNbO3 crystals before and after chemical reduction at different annealing temperatures. The concentration of Mg in Mg:LiNbO3 samples was just below or above the photorefractive threshold. The reduction-induced changes in the absorption coefficient reveal the formation of polarons typical for doped LiNbO3 crystals. It was shown that the polaron concentration is maximal when the Mg concentration is just below the photorefractive threshold and the annealing temperature is near 500 °C. This temperature is optimal for the most efficient polaron formation at all considered concentrations of Mg. The fitting of the experimental absorption dispersion curves indicates that intermediate polarons are formed in LiNbO3:Mg crystals preferably. The spectral dependence of transmission for samples of lithium niobate of various thicknesses was studied. The results indicate that there are spatial regions with much greater absorption than that of bulk crystals. We assume that, in general, polarons are localized in thin near-surface regions. The spectral dependence of the refractive index in the vicinity of the phonon absorption edge indicates some essential changes of the phonon subsystem taking place after reduction. The infrared contribution into the dispersion of the dielectric function real part increases considerably after reduction. PACS 71.38.Ht; 71.38.-k; 78.20.Ci  相似文献   

14.
LiNbO3:Mg crystals doped with 0–8 mol. % Mg with stoichiometric, intermediate and congruent compositions were systematically investigated by Raman spectroscopy in backscattering y(zx)y, y(zz)y and z(xx)z geometries. The damping was found to be a very sensitive parameter for the characterization of the crystal composition. The half-widths of E(TO3)–E(TO9) and A 1(TO1)–A 1(TO4) bands having significant composition dependence for the undoped LiNbO3 crystals show only a weak Mg concentration dependence below the photorefractive threshold, which is a consequence of the counteracting effect of the decreasing NbLi and increasing MgLi contents. The half-widths of the bands, however, increase linearly with growing Mg content for samples above the threshold, irrespective of the Li/Nb ratio. The change in the Mg concentration dependence at a given Li/Nb ratio determines the same threshold value as that concluded from IR and UV spectroscopic measurements. The half-width of the main A 1(LO4) band at 873 cm-1 increases linearly with growing Mg concentration, but no threshold effect is observed. However, the ratio of the area of the main band and the high-frequency sideband shows a threshold effect that can be interpreted by the existing defect incorporation models. The small Raman band at about 740 cm-1 attributed earlier to NbLi vibration is also detected in above-threshold LiNbO3:Mg crystals, which can be explained by the vibration of Nb ions in Mg4Nb2O9 defect clusters appearing at high Mg concentrations. PACS 77.84.Dy; 63.20.Mt; 42.70.Mp; 78.30.-j  相似文献   

15.
The near-infrared nonvolatile holographic recording has been realized in a doubly doped LiNbO3:Fe:Rh crystal by the traditional two-center holographic recording scheme, for the first time. The recording performance of this crystal has been investigated by recording with 633 nm red light, 752 nm red light and 799 nm near-infrared light and sensitizing with 405 nm purple light. The experimental results show that, co-doped with Fe and Rh, the near-infrared absorption and the photovoltaic coefficient of shallow trap Fe are enhanced in this LiNbO3:Fe:Rh crystal, compared with other doubly doped LiNbO3 crystals such as LiNbO3:Fe:Mn. It is also found that the sensitizing light intensity affects the near-infrared recording sensitivity in a different way than two-center holographic recording with shorter wavelength, and the origin of experimental results is analyzed.  相似文献   

16.
A series of Mg:Ce:Cu:LiNbO3 crystals has been grown by Czochralski method. Their infrared transmittance spectra and ultraviolet-visible absorption spectra were measured and discussed to investigate their defect structure. The nonvolatile holographic recording of Mg:Ce:Cu:LiNbO3 crystals was characterized by the two-photon fixed method. We found that the recording time of Mg:Ce:Cu:LiNbO3 crystals became shorter and nonvolatile diffraction efficiency decreases with the increase of Mg doping concentration, especially doping with Mg approaches and exceeds the so-called threshold. And the nonvolatility vanishes when the concentration of MgO exceeds 4 mol%. The intrinsic and extrinsic defects were discussed to explain the nonvolatile holographic properties in the Mg:Ce:Cu:LiNbO3 crystals.  相似文献   

17.
Ce:Fe:LiNbO3 crystals with various [Li]/[Nb] ratios were grown by the Czochralski method from melts having compositions varying between 48.6 and 58 mol% Li2O. The Ce, Li and Nb concentrations in the grown Ce:Fe:LiNbO3 crystals were analyzed by the inductively coupled plasma atomic emission spectrometer (ICP-AES). It was found that as the [Li]/[Nb] ratio increases in the melt, the [Li]/[Nb] ratio in the crystal and the distribution coefficients of Ce ions increase also. The photorefractive properties of the Ce:Fe:LiNbO3 crystals were experimentally studied by the two-wave coupling method. The results show that as the [Li]/[Nb] ratio increases, the dynamic range decreases, but the photorefractive sensitivity and the signal-to-noise ratio improve. In a coherent volume 0.192 cm3 of a Ce:Fe:LiNbO3 crystal with [Li]/[Nb] ratio of 1.2, 3800 holograms with 800×600 pixels have been successfully multiplexed in a compact volume holographic data storage system.  相似文献   

18.
The congruent Mn(0.1 wt%):Fe(0.03 wt%):LiNbO3 crystals doped with different concentration of MgO(0,1,3,6 mol%) have been grown by Czochralski method in air atmosphere. Some crystal samples were reduced in Li2CO3 powder. The defects and doping ions location in crystals were investigated by UV-Vis. absorption spectrum as well as infrared transmittance spectrum analysis. In two wave coupling experiments we determined the writing time, maximum diffraction efficiency and the erasure time of four crystal samples with He-Ne laser at 633 nm. The results indicated that Mg(3 mol%):Fe:Mn:LiNbO3 was the most proper holographic recording media material among four crystals in the paper.  相似文献   

19.
The near-stoichiometric LiNbO3 crystal co-doped with In2O3, Fe2O3, and CuO has been grown from a Li-rich melt (Li/Nb = 1.38, atomic ratio) by the Czochralski method in air atmosphere for the first time. The OH absorption spectra were characterized to investigate the structure defects of the crystals. The appearance of the 3506 cm−1 absorption peak manifests that the composition of the grown crystal is close to the stoichiometric ratio. The photorefractive properties were also measured by the two-wave coupling experiments. The results show that the near-stoichiometric In:Fe:Cu:LiNbO3 crystal has a larger refractive index change, higher recording sensitivity and larger two-wave coupling gain coefficient than those obtained in the congruent In:Fe:Cu:LiNbO3 crystal under the same experimental conditions. The material of near-stoichiometric In:Fe:Cu:LiNbO3 crystal is a promising candidate for blue photorefractive holographic recording.  相似文献   

20.
In LiNbO3:Fe,Me crystals (Me = K, Mg, Zn) elementary holograms are recorded and erased with frequency-doubled, ordinarily polarized pulses of a Q-switched Nd:YAG laser. At high light intensities (I > 109 Wm–2) holographic sensitivities and saturation values of refractive index changes grow with increasing intensity and a contribution to photo-conductivity appears increasing quadratically withI. The intensity-dependent parts of the holographic quantities are diminished by increasing the lithium content of the samples or by doping the crystals with magnesium or zinc. Experimental results can be described by a two-center charge transport model, which is the Fe2+/3+ model supplemented by shallow traps, namely niobium ions occupying lithium sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号