首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Two different pathways for the introduction of an acetyl group at N(epsilon ) in a N(alpha), N(delta), and -COO protected histidine to afford N(epsilon)-(CH(2)COOH)-histidine derivative 7 b are presented. The purpose of this study is the coupling of 7 b to amino groups in bioactive molecules such as peptides. After full deprotection of such a bioconjugate, histidine provides three coordination sites which efficiently coordinate to [(99m)Tc(OH(2))(3)(CO)(3)](+) or [Re(OH(2))(3)(CO)(3)](+) in a facial geometry. This allows the development of novel radiopharmaceuticals. Selective derivatization at the N(epsilon) position has conveniently been achieved by concomitant protection of N(alpha) and N(delta) with a carbonyl group forming a six-membered urea. Cyclic urea ring opening with Fm-OH, coupling of phenylalanine as a model to 7 b through its primary amine and removing of all protecting groups in one step gave a histidine derivative of phenylalanine which could be labeled at 10(-5) M with (99m)Tc in very high yield and even in about 50 % yield at 10(-6) M. The Xray structure of a complex with [Re(CO)(3)](+) in which anilin is coupled to 7 b confirms the facial arrangement of histidine. A second pathway applies directly the [Re(CO)(3)](+) moiety as a protecting group. This is one of the rare examples in which a metal fragment is used as a protecting group for organic functionalities. The coordination to histidine protects the N(alpha), N(delta) and COO group in one single step, subsequent alkylation with BrCH(2)COOH(R) at N(epsilon), coupling to phenylalanine and oxidative deprotection of [Re(CO)(3)](+) to [ReO(4)](-) gave the corresponding bioconjugate in which histidine is coupled to phenylalanine through an acetylamide at N(epsilon). Both methods offer convenient pathways to introduce histidine in a biomolecule under retention of its three coordination sites. The procedures are adaptable to any biomolecule with pendant amines and allow the development of novel radiopharmaceuticals or inversed peptides.  相似文献   

2.
Administration of (14)C-labelled L-deprenyl to rats results in the urinary elimination of a 14C-labelled compound. The 9-fluorenylmethoxycarbonyl chloride-reacted urine sample is fractionated by high-performance liquid chromatography (HPLC) on an octadecyl silica stationary phase. N(epsilon)-Monomethyl-lysine is identified in the fraction containing the majority of the radioactivity. Structural elucidation is carried out using HPLC-mass spectrometry in atmospheric pressure chemical ionization mode. Identification of the 14C-labelled fragment in Ne-monomethyl-lysine is an experimental proof that an N-methylated amino acid is generated by transmethylation from a well-known drug. This type of transmethylation may have basic importance in the positive side effects of certain drugs.  相似文献   

3.
Exploring the molecular channels of class I histone deacetylases (HDACs) with buried active sites are important to understand their structures and functionalities. In this work, we perform hybrid classical molecular dynamics and random acceleration molecular dynamics simulations to explore the B3N [i.e., (4‐(dimethylamino)N‐[7(hydroxyamino)‐7‐oxoheptyle] benzamide)] exit channels in the x‐ray crystal structures of HDAC3 and HDAC8 enzymes. Our simulations identify B3N release through four different channels in HDAC3 (denoted as A1, A2, B1, and B2) and HDAC8 (referred as A1, B1, B2, and B3) enzymes, among which egression through channel A1 is more predominant in both the enzymes. This mechanism is similar to ligand release in HDAC1 and HDAC2 described in our previous study and can be the fingerprint ligand release mechanisms in class I HDACs. Ligand release events through B channels, on the other hand, are different among HDAC3 and HDAC8, highlighting the significances of substituted residues in controlling the access to these channels This study reveals a novel aromatic gating mechanism elicited by TYR154‐TRP141‐TYR111 that controls the B3N access to all the B channels in HDAC8. The TRP141 in HDAC8 is substituted by LEU133 in HDAC3, which do not hinder the access to B channels in HDAC3. However, two hydrogen bonded barricades formed as ARG28‐GLY297‐GLY295‐GLY131 and TRP129‐ARG28‐ALA130‐LEU29‐TRP129 obstruct the B3N from exploring the B channels in HDAC3. The structural and dynamical characterizations of molecular channels and ligand unbinding mechanisms reported in this study provide novel structural insights and atomic level perspectives on HDAC3 and HDAC8 enzymes, thereby potentially aiding in the design of more specific HDAC inhibitors.Copyright © 2013 Wiley Periodicals, Inc.  相似文献   

4.
Reversible lysine acetylation and methylation regulate the function of a wide variety of proteins, including histones. Here, we have synthesized azalysine-containing peptides in acetylated and unacetylated forms as chemical probes of the histone deacetylases (HDAC8, Sir2Tm, and SIRT1) and the histone demethylase, LSD1. We have shown that the acetyl-azalysine modification is a fairly efficient substrate for the sirtuins, but a weaker substrate for HDAC8, a classical HDAC. In addition to deacetylation by sirtuins, the acetyl-azalysine analogue generates a novel ADP-ribose adduct that was characterized by mass spectrometry, Western blot analysis, and nuclear magnetic resonance spectroscopy. This peptide-ADP-ribose adduct is proposed to correspond to a derailed reaction intermediate, providing unique evidence for the direct 2'-hydroxyl attack on the O-alkylimidate intermediate that is formed in the course of sirtuin catalyzed deacetylation. An unacetylated azalysine-containing H3 peptide proved to be a potent inhibitor of the LSD1 demethylase, forming an FAD adduct characteristic of previously reported related structures, providing a new chemical probe for mechanistic analysis.  相似文献   

5.
In order to contribute to an understanding of the effects of thioether sulfur ligation in copper-O(2) reactivity, the tetradentate ligands L(N3S) (2-ethylthio-N,N-bis(pyridin-2-yl)methylethanamine) and L(N3S')(2-ethylthio-N,N-bis(pyridin-2-yl)ethylethanamine) have been synthesized. Corresponding copper(I) complexes, [CuI(L(N3S))]ClO(4) (1-ClO(4)), [CuI(L(N3S))]B(C(6)F(5))(4) (1-B(C(6)F(5))(4)), and [CuI(L(N3S'))]ClO(4) (2), were generated, and their redox properties, CO binding, and O(2)-reactivity were compared to the situation with analogous compounds having all nitrogen donor ligands, [CuI(TMPA)(MeCN)](+) and [Cu(I)(PMAP)](+) (TMPA = tris(2-pyridylmethyl)amine; PMAP = bis[2-(2-pyridyl)ethyl]-(2-pyridyl)methylamine). X-ray structures of 1-B(C(6)F(5))(4), a dimer, and copper(II) complex [Cu(II)(L(N3S))(MeOH)](ClO(4))(2) (3) were obtained; the latter possesses axial thioether coordination. At low temperature in CH(2)Cl(2), acetone, or 2-methyltetrahydrofuran (MeTHF), 1 reacts with O(2) and generates an adduct formulated as an end-on peroxodicopper(II) complex [{Cu(II)(L(N3S))}(2)(mu-1,2-O(2)(2-))](2+) (4)){lambda(max) = 530 (epsilon approximately 9200 M(-1) cm(-1)) and 605 nm (epsilon approximately 11,800 M(-1) cm(-1))}; the number and relative intensity of LMCT UV-vis bands vary from those for [{Cu(II)(TMPA)}(2)(O(2)(2-))](2+) {lambda(max) = 524 nm (epsilon = 11,300 M(-1) cm(-1)) and 615 nm (epsilon = 5800 M(-1) cm(-1))} and are ascribed to electronic structure variation due to coordination geometry changes with the L(N3S) ligand. Resonance Raman spectroscopy confirms the end-on peroxo-formulation {nu(O-O) = 817 cm(-1) (16-18O(2) Delta = 46 cm(-1)) and nu(Cu-O) = 545 cm(-1) (16-18O(2) Delta = 26 cm(-1)); these values are lower in energy than those for [{Cu(II)(TMPA)}(2)(O(2)(2-))](2+) {nu(Cu-O) = 561 cm(-1) and nu(O-O) = 827 cm(-1)} and can be attributed to less electron density donation from the peroxide pi* orbitals to the Cu(II) ion. Complex 4 is the first copper-dioxygen adduct with thioether ligation; direct evidence comes from EXAFS spectroscopy {Cu K-edge; Cu-S = 2.4 Angstrom}. Following a [Cu(I)(L(N3S))](+)/O(2) reaction and warming, the L(N3S) thioether ligand is oxidized to the sulfoxide in a reaction modeling copper monooxygenase activity. By contrast, 2 is unreactive toward dioxygen probably due to its significantly increased Cu(II)/Cu(I) redox potential, an effect of ligand chelate ring size (in comparison to 1). Discussion of the relevance of the chemistry to copper enzyme O(2)-activation, and situations of biological stress involving methionine oxidation, is provided.  相似文献   

6.
N2-oxopropenyldeoxyguanosine (2) forms in duplex DNA by modification of dG residues with base propenal or malondialdehyde. The pKa of 2 was estimated to be 6.9 from the pH dependence of its ring-closing to the pyrimidopurinone derivative 1. The acidity of 2 may be an important determinant of its miscoding properties and its reactivity to nucleophiles in DNA or protein. To test this hypothesis, analogous N-oxopropenyl derivatives of dA (4), dC (5), and N1-methyl-dG (6) were synthesized and their pKa's were determined by optical titration. The N-oxopropenyl derivatives of dA and dC both exhibited pKa's of 10.5, whereas the N-oxopropenyl derivative of N1-methyldG exhibited a pKa of 8.2. Cross-linking of 2, 4, 5, and 6 to N(alpha)-acetyl-lysine was explored at neutral pH. Adduct 2 did not react with N(alpha)-acetyl-lysine, whereas 4-6 readily formed cross-links. The structures of the cross-links were elucidated, and their stabilities were investigated. The results define the acidity of oxopropenyl deoxynucleosides and highlight its importance to their reactivity toward nucleophiles. This study also identifies the structures of a potential novel class of DNA-protein cross-links.  相似文献   

7.
8.
Isotopic signatures of N2O are increasingly used to constrain the total global flux and the relative contribution of nitrification and denitrification to N2O emissions. Interpretation of isotopic signatures of soil-emitted N2O can be complicated by the isotopic effects of gas diffusion. The aim of our study was to measure the isotopic fractionation factors of diffusion for the isotopologues of N2O and to estimate the potential effect of diffusive fractionation during N2O fluxes from soils using simple simulations. Diffusion experiments were conducted to monitor isotopic signatures of N2O in reservoirs that lost N2O by defined diffusive fluxes. Two different mathematical approaches were used to derive diffusive isotope fractionation factors for 18O (epsilon18O), average 15N (epsilonbulk) and 15N of the central (alpha(-)) and peripheral (beta(-)) position within the linear N2O molecule (epsilon15Nalpha, epsilon15Nbeta). The measured epsilon18O was -7.79 +/- 0.27 per thousand and thus higher than the theoretical value of -8.7 per thousand. Conversely, the measured epsilonbulk (-5.23 +/- 0.27 per thousand) was lower than the theoretical value (-4.4 per thousand). The measured site-specific 15N fractionation factors were not equal, giving a difference between epsilon15Nalpha and epsilon15Nbeta (epsilonSP) of 1.55 +/- 0.28 per thousand. Diffusive fluxes of the N2O isotopologues from the soil pore space to the atmosphere were simulated, showing that isotopic signatures of N2O source pools and emitted N2O can be substantially different during periods of non-steady state fluxes. Our results show that diffusive isotope fractionation should be taken into account when interpreting natural abundance isotopic signatures of N2O fluxes from soils.  相似文献   

9.
Examination of the Y[N(SiMe(3))(2)](3)/KC(8) reduction system that allowed isolation of the (N(2))(3-) radical has led to the first evidence of Y(2+) in solution. The deep-blue solutions obtained from Y[N(SiMe(3))(2)](3) and KC(8) in THF at -35 °C under argon have EPR spectra containing a doublet at g(iso) = 1.976 with a 110 G hyperfine coupling constant. The solutions react with N(2) to generate (N(2))(2-) and (N(2))(3-) complexes {[(Me(3)Si)(2)N](2)(THF)Y}(2)(μ-η(2):η(2)-N(2)) (1) and {[(Me(3)Si)(2)N](2)(THF)Y}(2)(μ-η(2):η(2)-N(2))[K(THF)(6)] (2), respectively, and demonstrate that the Y[N(SiMe(3))(2)](3)/KC(8) reaction can proceed through an Y(2+) intermediate. The reactivity of (N(2))(3-) radical with proton sources was probed for the first time for comparison with the (N(2))(2-) and (N(2))(4-) chemistry. Complex 2 reacts with [Et(3)NH][BPh(4)] to form {[(Me(3)Si)(2)N](2)(THF)Y}(2)(μ-N(2)H(2)), the first lanthanide (N(2)H(2))(2-) complex derived from dinitrogen, as well as 1 as a byproduct, consistent with radical disproportionation reactivity.  相似文献   

10.
We have partially purified active delta and epsilon subunits of the E. coli membrane-bound Mg2+-ATPase (ECF1). Treating purified ECF1 with 50% pyridine precipitates the major subunits (alpha, beta, and gamma) of the enzyme, but the two minor subunits (delta and epsilon), which are present in relatively small amounts, remain in solution. The delta and epsilon subunits were then resolved from one another by anion exchange chromatography. The partially purified epsilon strongly inhibits the hydrolytic activity of ECF1. The epsilon fraction inhibits both the highly purified five-subunit ATPase and the enzyme deficient in the delta subunit. The latter result indicates that the delta subunit is not required for inhibition by epsilon. By contrast, two-subunit enzyme, consisting chiefly of the alpha and beta subunits, was insensitive to the ATPase inhibitor, suggesting that the gamma subunit may be required for inhibition by epsilon. The partially purified delta subunit restored the capacity of ATPase deficient in delta to recombine with ATPase-depleted membranes and to reconstitute ATP-dependent transhydrogenase. Previously we reported (Biochem, Biophys. Res. Commun. 62:764 [1975]) that a fraction containing both the delta and epsilon subunits of ECF1 restored the capacity of ATPase missing delta to recombine with depleted membranes and to function as a coupling factor in oxidative phosphorylation and for the energized transhydrogenase. These reconstitution experiments using isolated subunits provide rather substantial evidence that the delta subunit is essential for attaching the ATPase to the membrane and that the epsilon subunit has a regulatory function as an inhibitor of the ATPase activity of ECF1.  相似文献   

11.
The compounds (NC(12)H(8)(NH)(2))[Ln(N(3)C(12)H(8))(4)], Ln = Y, Tb, Yb, and [Ln(N(3)C(12)H(8))(2)(N(3)C(12)H(9))(2)][Ln(N(3)C(12)H(8))(4)](N(3)C(12)H(9))(2), with Ln = La, Sm, Eu, were obtained by reactions of the group 3 metals yttrium and lanthanum as well as the lanthanides europium, samarium, terbium, and ytterbium with 2-(2-pyridyl)-benzimidazole. The reactions were carried out in melts of the amine without any solvent and led to two new groups of homoleptic rare earth pyridylbenzimidazolates. The trivalent rare earth atoms have an eightfold nitrogen coordination of four chelating pyridylbenzimidazolates giving an ionic structure with either pyridylbenzimidazolium or [Ln(N(3)C(12)H(8))(2)(N(3)C(12)H(9))(2)](+) counterions. With Y, Eu, Sm, and Yb, single crystals were obtained whereas the La- and Tb-containing compounds were identified by powder methods. The products were investigated by X-ray single crystal or powder diffraction and MIR and far-IR spectroscopy, and with DTA/TG regarding their thermal behavior. They are another good proof of the value of solid-state reaction methods for the formation of homoleptic pnicogenides of the lanthanides. Despite their difference in the chemical formula, both types (NC(12)H(8)(NH)(2))[Ln(N(3)C(12)H(8))(4)], Ln = Y (1), Tb (2), Yb (3), and [Ln(N(3)C(12)H(8))(2)(N(3)C(12)H(9))(2)][Ln(N(3)C(12)H(8))(4)](N(3)C(12)H(9))(2), Ln = La (4), Sm (5), Eu (6), crystallize isotypic in the tetragonal space group I4(1). Crystal data for (1): T = 170(2) K, a = 1684.9(1) pm, c = 3735.0(3) pm, V = 10603.5(14) x 10(6) pm(3), R1 for F(o) > 4sigma(F(o)) = 0.053, wR2 = 0.113. Crystal data for (3): T = 170(2) K, a = 1683.03(7) pm, c = 3724.3(2) pm, V = 10549.4(14) x 10(6) pm(3), R1 for F(o) > 4sigma(F(o)) = 0.047, wR2 = 0.129. Crystal data for (5): T = 103(2) K, a = 1690.1(2) pm, c = 3759.5(4) pm, V = 10739(2) x 10(6) pm(3), R1 for F(o) > 4sigma(F(o)) = 0.050, wR2 = 0.117. Crystal data for (6): T = 170(2) K, a = 1685.89(9) pm, c = 3760.0(3) pm, V = 10686.9(11) x 10(6) pm(3), R1 for F(o) > 4sigma(F(o)) = 0.060, wR2 = 0.144.  相似文献   

12.
In contrast to the neutral macrocycle [UN*(2)(N,C)] (1) [N* = N(SiMe(3))(3); N,C = CH(2)SiMe(2)N(SiMe(3))] which was quite inert toward I(2), the anionic bismetallacycle [NaUN*(N,C)(2)] (2) was readily transformed into the enlarged monometallacycle [UN*(N,N)I] (4) [N,N = (Me(3)Si)NSiMe(2)CH(2)CH(2)SiMe(2)N(SiMe(3))] resulting from C-C coupling of the two CH(2) groups, and [NaUN*(N,O)(2)] (3) [N,O = OC(═CH(2))SiMe(2)N(SiMe(3))], which is devoid of any U-C bond, was oxidized into the U(V) bismetallacycle [Na{UN*(N,O)(2)}(2)(μ-I)] (5). Sodium amalgam reduction of 4 gave the U(III) compound [UN*(N,N)] (6). Addition of MN(3) or MCN to the (N,C), (N,N), and (N,O) metallacycles 1, 4, and 5 led to the formation of the anionic azide or cyanide derivatives M[UN*(2)(N,C)(N(3))] [M = Na, 7a or Na(15-crown-5), 7b], M[UN*(2)(N,C)(CN)] [M = NEt(4), 8a or Na(15-crown-5), 8b or K(18-crown-6), 8c], M[UN*(N,N)(N(3))(2)] [M = Na, 9a or Na(THF)(4), 9b], [NEt(4)][UN*(N,N)(CN)(2)] (10), M[UN*(N,O)(2)(N(3))] [M = Na, 11a or Na(15-crown-5), 11b], M[UN*(N,O)(2)(CN)] [M = NEt(4), 12a or Na(15-crown-5), 12b]. In the presence of excess iodine in THF, the cyanide 12a was converted back into the iodide 5, while the azide 11a was transformed into the neutral U(V) complex [U(N{SiMe(3)}SiMe(2)C{CHI}O)(2)I(THF)] (13). The X-ray crystal structures of 4, 7b, 8a-c, 9b, 10, 12b, and 13 were determined.  相似文献   

13.
High-resolution infrared spectra of the clusters N2O-(ortho-D2)N and N2O-(HD)N, N=1-4, isolated in bulk solid parahydrogen at liquid helium temperatures are studied in the 2225 cm-1 region of the nu3 antisymmetric stretch of N2O. The clusters form during vapor deposition of separate gas streams of a precooled hydrogen mixture (ortho-D2para-H2 or HDpara-H2) and N2O onto a BaF2 optical substrate held at approximately 2.5 K in a sample-in-vacuum liquid helium cryostat. The cluster spectra reveal the N2O nu3 vibrational frequency shifts to higher energy as a function of N, and the shifts are larger for ortho-D2 compared to HD. These vibrational shifts result from the reduced translational zero-point energy for N2O solvated by the heavier hydrogen isotopomers. These spectra allow the N=0 peak at 2221.634 cm-1, corresponding to the nu3 vibrational frequency of N2O isolated in pure solid parahydrogen, to be assigned. The intensity of the N=0 absorption feature displays a strong temperature dependence, suggesting that significant structural changes occur in the parahydrogen solvation environment of N2O in the 1.8-4.9 K temperature range studied.  相似文献   

14.
Highly sensitive successive determinations for PtII and SeIV ions have been developed based upon reactions with 1,4-dibromo-2,3-diaminonaphthalene (Br2DAN), which forms a near-infrared (NIR) absorbing complex (epsilon = 1.2 x 10(5) l mol-1 cm-1 at 800 nm) and an emissive complex (ex. 386 nm, em. 604 nm) for PtII and SeIV ions, respectively, in acidic aqueous micellar solutions. In the presence of a cationic surfactant, cetyltrimethylammonium chloride, the detection limits for PtII and SeIV ions are 1.2 ng ml-1 (3 sigma) and 0.98 ng ml-1 (S/N = 3), respectively. Hydrobromic acid plays a key role to enhance the color development of the NIR-absorbing PtII complex. The influences of CuII and ZnII ions at the normal human serum levels are readily tolerated, and interference from FeIII ion at 35 mumol l-1 is circumvented by the addition of 50 mumol l-1 of polyaminocarboxylates, such as EDTA.  相似文献   

15.
The AsbB enzyme, which is involved in the biosynthesis of the virulence-conferring siderophore petrobactin in Bacillus anthracis, is shown to catalyze efficient ATP-dependent condensation of spermidine, but not N(1)-(3,4-dihydroxbenzoyl)-spermidine, with N(8)-citryl-spermidine or N(1)-(3,4-dihydroxbenzoyl)-N(8)-citryl-spermidine, suggesting that N(1)-(3,4-dihydroxbenzoyl)-spermidine is very unlikely to be a significant intermediate in petrobactin biosynthesis, contrary to previous suggestions.  相似文献   

16.
Reaction of 2 molar equiv of the diamine chelated aryllithium dimers Li(2)(C(6)H(4)[CH(2)N(Et)CH(2)CH(2)NEt(2)]-2)(2) (Li(2)Ar(2)) with the appropriate metal bromide allows the synthesis of the first homologous series of monomeric group 11 bromoate complexes of type MLi(2)BrAr(2) (M = Cu (7), Ag (8), Au (9)). Both in the solid state and in solution, the bromocuprate 7 is isostructural with the bromoargentate 8. The crystal structures of 7 and 8 consist of a MLi(2) core, and each of the two aryl ligands bridges via electron-deficient bonding between the group 11 metal and one Li atom (d(C(ipso)-M) = 1.941(4) (mean) and 2.122(4) (mean) A, for 7 and 8, respectively). The bromine atom exclusively bridges between the two lithium atoms. Each of the ortho-CH(2)N(Et)CH(2)CH(2)NEt(2) moieties is N,N'-chelate bonded to one lithium (d(N-Li) = 2.195(5) and 2.182(0) (mean) A for 7 and 2.154(8) and 2.220(1) (mean) A for 8). Although the MLi(2)BrAr(2) compounds are neutral higher-order -ate species, the structure can also be regarded as consisting of a contact ion pair consisting of two ionic fragments, [Li-Br-Li](+) and [Ar(2)M](-), which are interconnected by both Li-N,N'-chelate bonding and a highly polar C(ipso)-Li interaction. On the basis of NMR and cryoscopic studies, the structural features of the bromoaurate 9 are similar to those of 7 and 8. A multinuclear NMR investigation shows that the bonding between the [Li-Br-Li] and [Ar(2)M] moieties is intermediate between ionic and neutral with an almost equally polarized C(ipso)-Li bond in 7, 8, and 9. Similar reactions between M(C(triple bond)N) and 2 molar equiv of LiAr yield the analogous 2:1 cyanoate complexes of type MLi(2)(C(triple bond)N)Ar(2) (M = Ag (10), Au (11)). Multinuclear NMR studies show that the cyanoate complexes 10 and 11 are isostructural with the bromoate complexes 7, 8, and 9. This paper illustrates that these cyanoaurates may serve as excellent model complexes to gain more insight into the structure of 2:1 cyanocuprates in solution.  相似文献   

17.
Two substituted oxines, nitroxoline (5) and 5-chloroquinolin-8-yl phenylcarbamate (22), were identified as hits in a high-throughput screen aimed at finding new anti-angiogenic agents. In a previous study, we have elucidated the molecular mechanism of antiproliferative activity of nitroxoline in endothelial cells, which comprises of a dual inhibition of type 2 human methionine aminopeptidase (MetAP2) and sirtuin 1 (SIRT1). Structure-activity relationship study (SAR) of nitroxoline offered many surprises where minor modifications yielded oxine derivatives with increased potency against human umbilical vein endothelial cells (HUVEC), but with entirely different as yet unknown mechanisms. For example, 5-nitrosoquinolin-8-ol (33) inhibited HUVEC growth with sub-micromolar IC(50), but did not affect MetAP2 or MetAP1, and it only showed weak inhibition against SIRT1. Other sub-micromolar inhibitors were derivatives of 5-aminoquinolin-8-ol (34) and 8-sulfonamidoquinoline (32). A sulfamate derivative of nitroxoline (48) was found to be more potent than nitroxoline with the retention of activities against MetAP2 and SIRT1. The bioactivity of the second hit, micromolar HUVEC and MetAP2 inhibitor carbamate 22 was improved further with an SAR study culminating in carbamate 24 which is a nanomolar inhibitor of HUVEC and MetAP2.  相似文献   

18.
Two new niobium and zinconiobium fluorophosphates, NbOF(PO4)2(C2H10N2)2 (1) and Zn3(NbOF)(PO4)4-(C2H10N2)2 (2), have been prepared under hydrothermal conditions using ethylenediamine as a template. The structures were determined by single crystal diffraction to be triclinic, space group P1 (No. 2), a = 8.1075 (6) A, b = 9.8961 (7) A, c = 10.1420(8) A, alpha = 111.655(1) degrees, beta = 111.51(1) degrees, gamma = 93.206(1) degrees, V = 686.19(9) A3, and Z = 2 for 1 and orthorhombic, space group Fddd (No. 70), a = 9.1928(2) A, b = 14.2090(10) A, c = 32.2971 (6) A, V = 4218.66(12) A3, and Z = 8 for 2, respectively. Compound 1 is an infinite linear chain consisting of corner-sharing [Nb2P2] 4-MRs bridged at the Nb centers with organic amines situated between chains, and compound 2, containing the chains similar to that in 1, forms a zeotype framework with organic amines situated in the gismondine-type [4684] cavities. The topology of 2 was previously unknown with vertex symbol 4 x 4 x 4 x 4 x 8 x 8 (vertex 1), 4 x 4 x 4 x 82 x 8 x 8 (vertex 2), 4 x 4 x 8 x 8 x 82 x 82 (vertex 3), and 4 x 4 x 4 x 82 x 8 x 8 (vertex 4). The topological relationships between the 4-connected network of 2 and several reported (3,4)-connected networks were discussed.  相似文献   

19.
The anion [Au2(CS3)2]2- has an unusually short Au-Au distance (2.80 A) for a binuclear Au(I) complex. We report detailed Raman studies of the nBu4N+ salt of this complex, including FT-Raman of the solid and UV/vis resonance Raman of dimethyl sulfoxide solutions. All five totally symmetric vibrations of the anion have been located and assigned. A band at delta nu = 125 cm-1 is assigned to nu (Au2). The visible-region electronic absorption bands (384 (epsilon 30,680) and 472 nm (epsilon 610 M-1 cm-1)) are attributable to CS3(2-) localized transitions, as confirmed by the dominance of nu sym(C-Sexo) (delta nu = 951 cm-1) in RR spectra measured in this region. An absorption band at 314 nm (22,250 M-1 cm-1) is assigned as the metal-metal 1(d sigma*-->p sigma) transition, largely because nu sym(C-Sexo) is not strongly enhanced in RR involving this band. Observation of the expected strong resonance enhancement of nu (Au2) was precluded as a result of masking by intense solvent Rayleigh scattering in the UV.  相似文献   

20.
The UV-absorption, fluorescence excitation and emission spectra of the alkaloids eudistomin N (6-bromo-nor-harmane) and eudistomin O (8-bromo-nor-harmane) were described. In order to perform a comparative analysis, we also studied other bromo-beta-carbolines and the corresponding non-substituted-carboline. Thus, 6-bromo-, 8-bromo-, 6,8-dibromo-, 3,6-dibromo- and 3,6,8-tribromo-derivatives of nor-harmane, harmane and harmine were studied. These studies were performed in EtOH and in EtOH + 1% perchloric acid solutions (pa). Furthermore, fluorescence quantum yields (phi(f)) in acetonitrile and acetonitrile + 1% perchloric acid solutions at 298 K were measured. The HOMO and LUMO energy, the positions (lambda(max)) and oscillator strength (f) of the (1)S(1) <--(1)S(0) band for all the neutral and protonated beta-carbolines studied was calculated and compared with the experimental data. The pK(a) values in aqueous solution for eudistomin N and O (6-bromo- and 8-bromo-nor-harmane), for 6-bromo-, 8-bromo- and 6,8-dibromo-harmane, and for 6-bromo- and 8-bromo-harmine were spectrophotometrically measured (pK((a)(H(2)O))) . The change of the acid-base character of these compounds on going from the ground state (pK(a)) to the first electronic excited singlet state (pK(a)(*)) as DeltapK(a) = pK(a)(*)-pK(a) = 0.625 Deltanu /T, in ethanol solution at 298 K were calculated (DeltapK(a(EtOH))). Proton affinities (PA) for all the compounds studied defined as minus the enthalpy change of the reaction M+H(+)--> MH(+) (gas state) were calculated. Basicity relative to pyridine (DeltaH(rPy)) defined as the enthalpy change of the isodesmic reaction MH(+) + Py--> M + PyH(+) (gas state) was also calculated. The effect of bromine as substituent on the properties of the beta-carboline moiety in nor-harmane, harmane and harmine is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号