首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The presence of pharmaceuticals and other wastewater-derived micropollutants in surface and groundwaters is receiving intense public and scientific attention. Yet simple GC/MS methods that would enable measurement of a wide range of such compounds are scarce. This paper describes a GC/MS method for the simultaneous determination of 13 pharmaceuticals (acetaminophen, albuterol, allopurinol, amitriptyline, brompheniramine, carbamazepine, carisoprodol, ciclopirox, diazepam, fenofibrate, metoprolol, primidone, and terbinafine) and 5 wastewater-derived contaminants (caffeine, diethyltoluamide, n-butylbenzene sulfonamide, n-nonylphenol, and n-octylphenol) by solid phase extraction (SPE) and derivatization with BSTFA. The method was applied to the analysis of raw and treated sewage samples obtained from a wastewater treatment plant located in the mid-Atlantic United States. All analytes were detected in untreated sewage, and 14 of the 18 analytes were detected in treated sewage.  相似文献   

2.
Presented is the first comprehensive study of drugs of abuse on suspended particulate matter (SPM) in wastewater. Analysis of SPM is crucial to prevent the under-reporting of the levels of analyte that may be present in wastewater. Analytical methods to date analyse the aqueous part of wastewater samples only, removing SPM through the use of filtration or centrifugation. The development of an analytical method to determine 60 compounds on SPM using a combination of pressurised liquid extraction, solid phase extraction and liquid chromatography coupled with tandem mass spectrometry (PLE-SPE-LC-MS/MS) is reported. The range of compounds monitored included stimulants, opioid and morphine derivatives, benzodiazepines, antidepressants, dissociative anaesthetics, drug precursors, and their metabolites. The method was successfully validated (parameters studied: linearity and range, recovery, accuracy, reproducibility, repeatability, matrix effects, and limits of detection and quantification). The developed methodology was applied to SPM samples collected at three wastewater treatment plants in the UK. The average proportion of analyte on SPM as opposed to in the aqueous phase was <5% for several compounds including cocaine, benzoylecgonine, MDMA, and ketamine; whereas the proportion was >10% with regard to methadone, EDDP, EMDP, BZP, fentanyl, nortramadol, norpropoxyphene, sildenafil and all antidepressants (dosulepin, amitriptyline, nortriptyline, fluoxetine and norfluoxetine). Consequently, the lack of SPM analysis in wastewater sampling protocol could lead to the under-reporting of the measured concentration of some compounds.  相似文献   

3.
A method was developed to determine 11 pharmaceutical compounds in water samples. The method uses SPE and HPLC coupled to MS (LC/MS) using ESI in both positive and negative modes. Three different sorbents were compared for the extraction of analytes from river and sewage treatment plant (STP) waters and OASIS HLB provided the best results. For the solid-phase extraction of 500 mL of river water samples, the recoveries were between 41 and 101% with the exception of acetaminophen, salicylic acid and naproxen. The LODs were between 3 and 5 ng/L for all the compounds, except naproxen which had an LOD of 15 ng/L. Acetaminophen, caffeine, carbamazepine, bezafibrate and ibuprofen were found in three of the tested river samples at ng/L levels and among them, the highest values were for caffeine and bezafibrate with 305 and 363 ng/L, respectively. For the influent and effluent water samples of the STP, volumes of 100 and 250 mL were used, respectively, to obtain acceptable recoveries. All the compounds showed recoveries between 33 and 91% for effluent samples and 33-72% for influent samples, with the exception of acetaminophen, salicylic acid and bezafibrate, which had lower recoveries. The method developed enabled pharmaceuticals in the influent and effluent sewage waters to be determined in five campaigns carried out between February 2004 and June 2005. Several pharmaceuticals were found in the influent samples: for instance, maximum concentrations of ibuprofen and caffeine were 6 and 40 microg/L, respectively.  相似文献   

4.
For the first time, an integrated procedure for a quantitative multiresidue analysis of dissolved and particulate illicit drug target residues was developed and validated in three different wastewater matrices. The procedure consists of a comprehensive sample enrichment, fractionation and cleanup followed by the determination of target analytes by triple quadrupole liquid chromatography–tandem mass spectrometry in both positive and negative ionisation polarities. The enrichment of illicit drugs from suspended solids and aqueous samples was performed using pressurised liquid extraction and solid phase extraction (SPE), respectively. The performance of different SPE cartridges was investigated in order to optimise the overall recovery and to reduce the matrix effects. The optimal results were obtained by combining mixed cation exchange (Oasis MCX) cartridges for fractionated enrichment, weak anion exchange for an additional extract cleanup and optimised chromatographic separation to minimise the impact from co-extracted interferences. The method was applied for the analysis of raw wastewater (RW), activated sludge (AS) and secondary effluent (SE) samples collected at four different wastewater treatment plants. The average contributions of the particulate drugs in the RW and AS were 1–28 and 23–65 %, respectively. This suggested that the total mass loads of some drugs might be underestimated by neglecting the particulate fraction. Moreover, relatively high distribution coefficients, determined for 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (RW?=?1211 L/kg) and 11-hydroxy-Δ9-tetrahydrocannabinol (RW?=?1,786 L/kg) implied that adsorption might play a significant role in their overall removal during wastewater treatment.
Figure
Scheme of the integrated analytical protocol for the analyses of particulate and dissolved drug target residues in wastewater  相似文献   

5.
An analytical method with two extraction steps has been developed and validated for the simultaneous determination of 30 pharmaceuticals belonging to various therapeutic categories in urban wastewater. The aim was to boost the little available information on drugs' fates in sewage treatment plants (STPs) and in the receiving surface water. Aqueous samples were divided into two aliquots, each extracted by a different solid-phase extraction (SPE) method and analysed by reversed-phase liquid chromatography tandem mass spectrometry (HPLC-MS-MS). Recoveries of the pharmaceuticals were mostly greater than 70% and the overall variability of the method was below 8%. The instrumental quantification limit (IQL) varied between 30 and 400 pg injected, and the limits of quantification (LOQ) were in the low ng/L range. Nineteen pharmaceuticals were detected in concentrations between 0.5 and 2000 ng/L in effluents collected from several STPs in Italy. Atenolol, ciprofloxacin, furosemide, hydrochlorothiazide, ofloxacin, ranitidine and sulphamethoxazole were the most abundant compounds. The present analytical method was useful to check for pharmaceuticals in various Italian STPs and to identify the most abundant compounds.  相似文献   

6.
The applicability of three different ionization techniques: atmospheric pressure photoionization (APPI), atmospheric pressure chemical ionization (APCI) and electrospray ionization (ESI) was tested for the liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis of five target pharmaceuticals (cyclophosphamide, methotrexate, bezafibrate, enalapril and orlistat) in wastewater samples. Performance was compared both by flow injection analysis (FIA) and on-column analysis in deionized water and wastewater samples. A column switching technique for the on-line extraction and analysis of water samples was used. For both FIA and on-column analysis, signal intensity and signal-to-noise (S/N) ratio of the target analytes in the three sources were studied. Limits of detection and matrix effects during the analysis of wastewater samples were also investigated. ESI generated significantly larger peak areas and higher S/N ratios than APCI and APPI in FIA and in on-column analysis. ESI was proved to be the most suitable ionization method as it enabled the detection of the five target compounds, whereas APCI and APPI ionized only four compounds.  相似文献   

7.
A multi-class method for the simultaneous quantification and confirmation of 47 pharmaceuticals in environmental and wastewater samples has been developed. The target list of analytes included analgesic and anti-inflammatories, cholesterol lowering statin drugs and lipid regulators, antidepressants, anti-ulcer agents, psychiatric drugs, ansiolitics, cardiovasculars and a high number (26) of antibiotics from different chemical groups. A common pre-concentration step based on solid-phase extraction with Oasis HLB cartridges was applied, followed by ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) measurement. All compounds were satisfactorily determined in just one single injection, with a chromatographic run time of only 10 min. The process efficiency (combination of the matrix effect and the extraction process recovery) for the 47 selected compounds was evaluated in nine effluent wastewater (EWW) samples, and the use of different isotope-labelled internal standards (ILIS) was investigated to correct unsatisfactory values. Up to 12 ILIS were evaluated in EWW and surface water (SW). As expected, the ILIS provided satisfactory correction for their own analytes. However, the use of these ILIS for the rest of pharmaceuticals was problematic in some cases. Despite this fact, the correction with analogues ILIS was found useful for most of analytes in EWW, while was not strictly required in the SW tested. The method was successfully validated in SW and EWW at low concentration levels, as expected for pharmaceuticals in these matrices (0.025, 0.1 and 0.5 μg/L in SW; 0.1 and 0.5 μg/L in EWW). With only a few exceptions, the instrumental limits of detection varied between 0.1 and 8 pg. The limits of quantification were estimated from sample chromatograms at the lowest spiked levels tested and normally were below 20 ng/L for SW and below 50 ng/L for EWW. The developed method was applied to the analysis of around forty water samples (river waters and effluent wastewaters) from the Spanish Mediterranean region. Almost all the pharmaceuticals selected in this work were detected, mainly in effluent wastewater. In both matrices, analgesics and anti-inflammatories, lipid regulators and quinolone antibiotics were the most detected groups.  相似文献   

8.
The feasibility of stir-bar sorptive extraction (SBSE) followed by liquid desorption in combination with large volume injection (LVI)-in port silylation and gas chromatography-mass spectrometry (GC-MS) for the simultaneous determination of a broad range of 46 acidic and polar organic pollutants in water samples has been evaluated. The target analytes included phenols (nitrophenols, chlorophenols, bromophenols and alkylphenols), acidic herbicides (phenoxy acids and dicamba) and several pharmaceuticals. Experimental variables affecting derivatisation yield and peak shape as a function of different experimental PTV parameters [initial injection time, pressure and temperature and the ratio solvent volume/N-(tert-butyldimethylsilyl)-N-methyltrifluoroacetamide (MTBSTFA) volume] were first optimised by an experimental design approach. Subsequently, SBSE conditions, such as pH, ionic strength, agitation speed and extraction time were investigated. After optimisation, the method failed only for the extraction of most polar phenols and some pharmaceuticals, being suitable for the determination of 37 (out of 46) pollutants, with detection limits for these analytes ranging between 1 and 800 ng/L and being lower than 25 ng/L in most cases. Finally, the developed method was validated and applied to the determination of target analytes in various aqueous environmental matrices, including ground, river and wastewater. Acceptable accuracy (70-130%) and precision values (<20%) were obtained for most analytes independently of the matrix, with the exception of some alkylphenols, where an isotopically labelled internal standard would be required in order to correct for matrix effects. Among the drawbacks of the method, carryover was identified as the main problem even though the Twisters were cleaned repeatedly.  相似文献   

9.
10.
A solid‐phase extraction combined with a liquid chromatography‐tandem mass spectrometry analysis has been developed and validated for the simultaneous determination of 44 pharmaceuticals belonging to different therapeutic classes (i.e., antibiotics, anti‐inflammatories, cardiovascular agents, hormones, neuroleptics, and anxiolytics) in water samples. The sample preparation was optimized by studying target compounds retrieval after the following processes: i) water filtration, ii) solid phase extraction using Waters Oasis HLB cartridges at various pH, and iii) several evaporation techniques. The method was then validated by the analysis of spiked estuarine waters and wastewaters before and after treatment. Analytical performances were evaluated in terms of linearity, accuracy, precision, detection, and quantification limits. Recoveries of the pharmaceuticals were acceptable, instrumental detection limits varied between 0.001 and 25 pg injected and method quantification limits ranged from 0.01 to 30.3 ng/L. The precision of the method, calculated as relative standard deviation, ranged from 0.3 to 49.4%. This procedure has been successfully applied to the determination of the target analytes in estuarine waters and wastewaters. Eight of these 44 pharmaceuticals were detected in estuarine water, while 26 of them were detected in wastewater effluent. As expected, the highest values of occurrence and concentration were found in wastewater influent.  相似文献   

11.
The present study describes the first fully automated method based on on-line solid-phase extraction (SPE) coupled to hydrophilic interaction chromatography-electrospray-mass spectrometry (HILIC-(ESI)MS) to determine a group of polar drugs that includes illicit drugs (such as cocaine, morphine, codeine and metabolites) and pharmaceuticals in environmental water samples. The SPE was performed using a highly retentive polymeric sorbent. The HILIC separation was optimised and the initial high organic content of the chromatographic mobile phase, was also suitable for the proper on-line elution of the analytes retained in the SPE column and for enhancing the ESI ionisation efficiency. This method allows the loading of samples of up to 250ml of ultrapure water or 10ml of environmental water samples spiked at low ngl(-1) levels of the analytes. The method yields near 100% recoveries for all the analytes. The method was also validated with environmental water samples with linear ranges from 5 to 1000ngl(-1) and limits of detection ≤2ngl(-1) for most of the compounds.  相似文献   

12.
This work describes the development, optimization, and validation of a new method for the simultaneous determination of a wide range of pharmaceuticals (beta-blockers, lipid regulators…) and personal care products (fragrances, UV filters, phthalates…) in both aqueous and solid environmental matrices. Target compounds were extracted from sediments using pressurized hot water extraction followed by stir bar sorptive extraction. The first stage was performed at 1,500 psi during three static extraction cycles of 5 min each after optimizing the extraction temperature (50–150 °C) and addition of organic modifiers (% methanol) to water, the extraction solvent. Next, aqueous extracts and water samples were processed using polydimethylsiloxane bars. Several parameters were optimized for this technique, including extraction and desorption time, ionic strength, presence of organic modifiers, and pH. Finally, analytes were extracted from the bars by ultrasonic irradiation using a reduced amount of solvent (0.2 mL) prior to derivatization and gas chromatography–mass spectrometry analysis. The optimized protocol uses minimal amounts of organic solvents (<10 mL/sample) and time (≈8 h/sample) compared to previous existing methodologies. Low standard deviation (usually below 10 %) and limits of detection (sub-ppb) vouch for the applicability of the methodology for the analysis of target compounds at trace levels. Once developed, the method was applied to determine concentrations of these compounds in several types of sample (wastewater, seawater, pore water, and sediment) from Cadiz Bay (SW Spain). To our knowledge, these findings represent the first information available on the presence of some of the target compounds in the marine environment.  相似文献   

13.
A sensitive analytical method has been developed and validated for simultaneous determination of pharmaceuticals from different therapeutic classes, i.e. five sulfonamide (SA) and trimethoprim antimicrobials and the anti-inflammatory drug diclofenac, in effluent wastewaters at trace levels. Effluent samples from treatment of wastewater were enriched by solid-phase extraction (SPE) using the Waters Oasis HLB cartridge. The analytes were identified and quantified by reversed-phase liquid chromatography-tandem mass spectrometry operated in the selected reaction monitoring (SRM) mode, using positive electrospray ionization. The pharmaceuticals were, consequently, quantified both by use of isotopically labelled internal standards and by standard addition methods to address the issue of matrix effects related to signal suppression by co-eluting compounds. Average recoveries from fortified samples were usually >70%, with relative standard deviations below 20%. Method detection limits in wastewater matrices were between 7.0 and 10 ng L(-1). Identification points (IPs) were used for unequivocal identification of target analytes in real samples. Diclofenac, trimethoprim, and sulfamethoxazole were mainly detected, in the concentration range 10 to 400 ng L(-1), in effluent samples collected from four different sewage-treatment plants in Greece.  相似文献   

14.
A new-multi residue method was developed for the environmental monitoring of 65 stimulants, opiod and morphine derivatives, benzodiazepines, antidepressants, dissociative anaesthetics, drug precursors, human urine indicators and their metabolites in wastewater and surface water. The proposed analytical methodology offers rapid analysis for a large number of compounds, with low limits of quantification and utilises only one solid-phase extraction-ultra performance liquid chromatography-positive electrospray ionisation tandem mass spectrometry (SPE-LC-MS/MS) method, thus overcoming the drawbacks of previously published procedures. The method employed solid phase extraction with the usage of Oasis MCX sorbent and subsequent ultra performance liquid chromatography-positive electrospray ionisation tandem mass spectrometry. The usage of a 1.7 μm particle size column (1 mm×150 mm) resulted in very low flow rates (0.04 mLmin(-1)), and as a consequence gave good sensitivity, low mobile phase consumption and short retention times for all compounds (from 2.9 to 23.1 min). High SPE recoveries (>60%) were obtained for the majority of compounds. The mean correlation coefficients of the calibration curves were typically higher than 0.997 and showed good linearity in the range 0-1000 μgL(-1). The method limits of detection ranged from 0.1 ngL(-1) for compounds including cocaine, benzoylecgonine, norbenzoylecgonine and 2-oxo-3-hydroxy-LSD to 100 ngL(-1) for caffeine. Method quantification limits ranged from 0.5 to 154.2 ngL(-1). Intra- and inter-day repeatabilities were on average less than 10%. The method accuracy range was within -33.1 to 30.1%. The new multi-residue method was used to analyse drugs of abuse in wastewater and river water in the UK environment. Of the targeted 65 compounds, 46 analytes were detected at levels above the method quantification limit (MQL) in wastewater treatment plant (WWTP) influent, 43 in WWTP effluent and 36 compounds in river water.  相似文献   

15.
The U.S. Environmental Protection Agency (EPA) Method 1694 for the determination of pharmaceuticals in water recently brought a new challenge for treatment utilities, where pharmaceuticals have been reported in the drinking water of 41-million Americans. This proposed methodology, designed to address this important issue, consists of solid-phase extraction (SPE) followed by liquid chromatography–mass spectrometry (LC/MS–MS) using triple quadrupole. Under the guidelines of Method 1694, a multi-residue method was developed, validated, and applied to wastewater, surface water and drinking water samples for the analysis of 70 pharmaceuticals. Four distinct chromatographic gradients and LC conditions were used according to the polarity and extraction of the different pharmaceuticals. Positive and negative ion electrospray were used with two MRM transitions (a quantifier and a qualifier ion for each compound), which adds extra confirmation not included in the original Method 1694. Finally, we verify, for the first time, EPA Method 1694 on water samples collected in several locations in Colorado, where positive identifications for several pharmaceuticals were found. This study is a valuable indicator of the potential of LC/MS–MS for routine quantitative multi-residue analysis of pharmaceuticals in drinking water and wastewater samples and will make monitoring studies much easier to develop for water utilities across the US, who are currently seeking guidance on analytical methods for pharmaceuticals in their water supplies.  相似文献   

16.
An enantioselective method for the determination of fluoxetine (a selective serotonin reuptake inhibitor) and its pharmacologically active metabolite norfluoxetine has been developed for raw and treated wastewater samples. The stable isotope-labeled fluoxetine and norfluoxetine were used in an extended way for extraction recovery calculations at trace level concentrations in wastewater. Wastewater samples were enriched by solid phase extraction (SPE) with Evolute CX-50 extraction cartridges. The obtained extraction recoveries ranged between 65 and 82% in raw and treated wastewater at a trace level concentration of 50 pM (15-16 ng L−1). The target compounds were identified by the use of chiral liquid chromatography tandem mass spectrometry (LC-MS/MS) in selected reaction monitoring (SRM) mode. The enantiomers were successfully resolved on a chiral α1-acid glycoprotein column (chiral AGP) with acetonitrile and 10 mM ammonium acetate buffer at pH 4.4 (3/97, v/v) as the mobile phase. The effects of pH, amount of organic modifier and buffer concentration in the mobile phase were investigated on the enantiomeric resolution (Rs) of the target compounds. Enantiomeric Rs-values above 2.0 (1.03 RSD%, n = 3) were achieved for the enantiomers of fluoxetine and norfluoxetine in all mobile phases investigated. The method was validated by assessing parameters such as cross-contamination and carryover during SPE and during LC analysis. Cross-talk effects were examined during the detection of the analytes in SRM mode. In addition, the isotopic purity of fluoxetine-d5 and norfluoxetine-d5 were assessed to exclude the possibility of self-contamination. The interassay precision of the chromatographic separation was excellent, with relative standard deviations (RSD) equal to or lower than 0.56 and 0.81% in raw and treated wastewaters, respectively. The method detection and quantification limits (respectively, MDL and MQL) were determined by the use of fluoxetine-d5 and norfluoxetine-d5. The MQL for the single enantiomers ranged from 12 to 14 pM (3.6-4.3 ng L−1) in raw wastewater and from 3 to 4 pM (0.9-1 ng L−1) in treated wastewater. The developed method has been employed for the quantification of (R)-fluoxetine, (S)-fluoxetine and the enantiomers of norfluoxetine in raw and treated wastewater samples to be presented in Part II of this study.  相似文献   

17.
18.
Pharmaceuticals constitute one of the most important emerging classes of environmental pollutants. A three‐phase solvent system of water, water containing 0.1% of formic acid and acetonitrile was successfully used to separate, by liquid chromatography with mass spectrometry (LC‐MS), polarity‐matched pharmaceuticals, that is, carbamazepine, clarithromycin, and erythromycin, as well as amoxicillin and metformin. Despite of polarity similarities, these pharmaceuticals were completely resolved in the analytical run time of 15 min. The optimized three‐phase solvent system based‐method was validated for the simultaneous analysis of six matched‐polarity pharmaceuticals in wastewater samples. Good linearity (coefficient of determination more than 0.993) and precision (relative standard deviation less than 15.66%) were achieved. Recovery of analytes from the wastewater was between 0.70 and 1.18. Limits of detections ranged from 0.0001 to 0.5114 µg/L. No significant matrix effect, evaluated by post extraction addition, was observed in the electrospray ionization (ESI) source. Then, this methodology has been successfully applied to environmental study of pharmaceutical residues occurring in influent and effluent wastewater samples, from the main wastewater treatment plant in Potenza (Basilicata, Southern Italy).  相似文献   

19.
A dispersive liquid–liquid micellar microextraction (DLLMME) method coupled with ultra‐high‐performance liquid chromatography (UHPLC) using Diode Array Detector (DAD) detector was developed for the analysis of five pharmaceutical compounds of different nature in wastewaters. A micellar solution of a surfactant, polidocanol, as extraction solvent (100 μL) and chloroform as dispersive solvent (200 μL) were used to extract and preconcentrate the target analytes. Samples were heated above critical temperature and the cloudy solution was centrifuged. After removing the chloroform, the reduced volume of surfactant was then injected in the UHPLC system. In order to obtain high extraction efficiency, the parameters affecting the liquid‐phase microextraction, such as time and temperature extraction, ionic strength and surfactant and organic solvent volume, were optimized using an experimental design. Under the optimized conditions, this procedure allows enrichment factors of up to 47‐fold. The detection limit of the method ranged from 0.1 to 2.0 µg/L for the different pharmaceuticals. Relative standard deviations were <26% for all compounds. The procedure was applied to samples from final effluent collected from wastewater treatment plants in Las Palmas de Gran Canaria (Spain), and two compounds were measured at 67 and 113 µg/L in one of them. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
We optimised the simultaneous analysis of four analytes, namely three anti-influenza drugs (oseltamivir (OS), zanamivir (ZAN) and amantadine (AMN)) and one metabolite of OS (oseltamivir carboxylate (OC)), in sewage treatment plant (STP) influent and effluent by verifying the types and conditions of solid phase extraction (SPE) appropriate for LC-MS/MS analysis. In summary, these target analytes were extracted from aqueous samples (30–50 mL) by using strong cation-exchange SPE cartridges (500 mg adsorbent) under acidic conditions (pH 3–4). After washing of the cartridges with acidified water (pH 3.0, 3 mL) and methanol (3 mL), the analytes were eluted with a mixed solvent (2 mL) of 10% (v/v) triethylamine in a 1:1 (v/v) mixture of acetone and water. Application of this technique to the target compounds should yield a comprehensive understanding of the occurrence and fate of anti-influenza drugs in the water environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号