首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The solubility of carbon dioxide in a series of 1-(2-hydroxyethyl)-3-methylimidazolium ([hemim]+) based ionic liquids (ILs) with different anions, viz. hexafluorophosphate ([PF6]?), trifluoromethanesulfonate ([OTf]?), and bis-(trifluoromethyl)sulfonylimide ([Tf2N]?) at temperatures ranging from 303.15 K to 353.15 K and pressures up to 1.3 MPa were determined. The solubility data were correlated using the Krichevsky–Kasarnovsky equation and Henry’s law constants were obtained at different temperatures. Using the solubility data, the partial molar thermodynamic functions of solution such as Gibbs free energy, enthalpy, and entropy were calculated. Comparison showed that the solubility of CO2 in the ILs studied follows the same behaviour as the corresponding conventional 1-ethyl-3-methylimidazolium ([emim]+) based ILs with the same anions, i.e. [hemim][NTf2] > [hemim][OTf] > [hemim][PF6] > [hemim][BF4].  相似文献   

3.
The swift heavy irradiation induced changes taking place in ethylene–chlorotrifluoroethylene (E–CTFE) copolymer films were investigated in correlation with the applied doses. Samples were irradiated in vacuum at room temperature by lithium (50 MeV), carbon (85 MeV), nickel (120 MeV) and silver (120 MeV) ions with the fluence in the range of 1×1011–3×1012 ions cm?2. Structural and thermal properties of the irradiated as well as pristine E–CTFE films were studied using FTIR, UV–visible, TGA, DSC and XRD techniques. Swift heavy ion irradiation was found to induce changes in E–CTFE depending upon the applied doses.  相似文献   

4.
Molybdenum (0.5 at%) doped indium oxide thin films deposited by spray pyrolysis technique were irradiated by 100 MeV O7+ ions with different fluences of 5×1011, 1×1012 and 1×1013 ions/cm2. Intensity of (222) peak of the pristine film was decreased with increase in the ion fluence. Films irradiated with the maximum ion fluence of 1×1013 ions/cm2 showed a fraction of amorphous nature. The surface microstructures on the surface of the film showed that increase in ion fluence decreases the grain size. Mobility of the pristine molybdenum doped indium oxide films was decreased from ~122 to 48 cm2/V s with increasing ion fluence. Among the irradiated films the film irradiated with the ion fluence of 5×1011 ions/cm2 showed relatively low resistivity of 6.7×10?4 Ω cm with the mobility of 75 cm2/V s. The average transmittance of the as-deposited IMO film is decreased from 89% to 81% due to irradiation with the fluence of 5×1011 ions/cm2.  相似文献   

5.
The microstructures, irradiation-induced defects and changes of mechanical property of Chinese domestic A508-3 steels after proton irradiation were investigated by TEM, positron lifetime, slow positron beam Doppler broadening spectroscopy and hardness measurements. The defects were induced by 240 keV proton irradiation with fluences of 1.25×1017 ions cm?2 (0.26 dpa), 2.5×1017 ions cm?2 (0.5 dpa), and 5.0×1017 ions cm?2 (1.0 dpa). The TEM observation revealed that the as-received steel had typical bainitic–ferritic microstructures. It was also observed that Doppler broadening S-parameter and average lifetime increased with dose level owing to the formation of defects and voids induced by proton irradiation. The correlation between positron parameters and hardness was found.  相似文献   

6.
NiO thin films grown on Si (100) substrate by electron beam evaporation method and sintered at 700 °C were irradiated with 200 MeV Au15+ ions. The fcc structure of the sintered films was retained up to the highest fluence (1×1013 ions cm?2) of irradiation. However the microstructure of the pristine film underwent a considerable modification with increasing ion fluence. 200 MeV Au ion irradiation led to compressive stress generation in NiO medium. The diameter of the stressed region created by 200 MeV Au ions along the ion path was estimated from the variation of stress with ion fluence and found to be ~11.6 nm. The film surface started cracking when irradiated at and above the fluence of 3×1012 ions cm?2. Ratio of the fractal dimension of the cracked surface obtained at 200 MeV and 120 MeV (Mallick et al., 2010a) Au ions was compared with the ratio of the radii of ion tracks calculated based on Coulomb explosion and thermal spike models. This comparison indicated applicability of thermal spike model for crack formation.  相似文献   

7.
Picolyl, pyridine, and methyl functionalized N-heterocyclic carbene iridium complexes [Cp1Ir(C^N)Cl]Cl (4, C^N = 3-Methyl-1-picolyimidazol-2-ylidene), [Cp1Ir(C^N)Cl][Cp1IrCl3] (5), [Cp1Ir(C-N)Cl]Cl (6, C-N = 3-Methyl-1-pyridylimidazol-2-ylidene) and [Cp1Ir(L)Cl2] (7, L = 1,3-dimethylimidazol-2-ylidene) have been synthesized by transmetallation from Ag(I) carbene species, and characterized by 1H NMR, 13C NMR spectra and elemental analyses. The molecular structures of 5–7 have been confirmed by X-ray single-crystal analyses. The iridium carbene complexes 4 and 6 show moderate catalytic activities (3.03 × 105 g PNB (mol Ir)?1 h?1 and 1.70 × 106 g PNB (mol Ir)?1 h?1) for the addition polymerization of norbornene in the presence of methylaluminoxane (MAO) as co-catalyst. The produced polynorbornene have been characterized by IR, 1H NMR and 13C NMR spectra, showing it follows the vinyl-addition-type of polymerization.  相似文献   

8.
Binding of copper to three peptide fragments of prion (Cu2+ binding sites: 60–91, 92–96 and 180–193 amino acid residues) was investigated by anodic stripping voltammetry to determine the stoichiometries of Cu2+-prion peptide interactions. The method relies on the synthesis of N-terminally acetylated/C-terminally amidated peptide fragments of prion by solid-phase synthesis and direct monitoring of the oxidation current of copper in the absence and presence of each prion fragment. Titration curves of Cu2+ with Ac-PHGGGWGQ-NH2, Ac-GGGTH-NH2 and Ac-VNITKQHTVTTTT-NH2 were obtained in concentrations ranging from 8.52 × 10?7 to 5.08 × 10?6, 3.95 × 10?7 to 1.94 × 10?6 and 7.82 × 10?8 to 4.51 × 10?7 M, respectively. The acquired data were used to calculate the stoichiometries (one peptide per Cu2+ ion for all the three studied systems) and apparent dissociation constants (Kd = 4.37 × 10?8–3.50 × 10?10 M) for the three complexes.  相似文献   

9.
A new polymeric membrane electrode has been constructed for the determination of phenylpropanolamine hydrochloride. The electrode was prepared by solubilizing the phenylpropanolamine-phosphomolybdate ion associate into a polyvinyl chloride matrix plasticized by dibutylphthalate as a solvent mediator. The electrode showed near-Nernstian response over the concentration range of 1 × 10?5–1 × 10?2 M with low detection limit of 6.3 × 10?6 M. The electrode displays a good selectivity for phenylpropanolamine with respect to a number of common inorganic and organic species. The electrode was successfully applied to the potentiometric determination of phenylpropanolamine ion in its pure state and its pharmaceutical preparation in batch and flow injection conditions.  相似文献   

10.
We studied the photochromism of a newly synthesized ionic liquid, [2PA-Bmim]Tf2N ([2PA-Bmim]+: 3-butyl-1-methyl-2-phenylazoimidazolium, Tf2N?: bis(trifluoromethanesulfonyl)-amide) which is characterized by a phenylazo group substituted on the imidazolium ring. The melting point of [2PA-Bmim]Tf2N is 329 K. The absorption spectrum of [2PA-Bmim]+ dissolved in conventional organic solvents or in ionic liquids changes drastically upon UV-light irradiation, which is attributed to the photoisomerization of the phenylazo group from E- to Z-forms during irradiation and the backward thermal isomerization from Z- to E-forms in the dark. The E–Z photoisomerization quantum yield, Φiso, was determined by 355 nm laser photolysis. The Φiso value slightly depends on solvent viscosity, from 0.12 in 3-butyl-1-methylimidazolium PF6? (η = 241 cP) to 0.19 in toluene (η < 1 cP). On the other hand, no solvent dependence was observed for Arrhenius parameters of the backward Z–E thermal isomerization. We discuss the isomerization mechanism and the reason why the E–Z photoisomerization yield depends on solvent viscosity.  相似文献   

11.
A novel chromophore BDT–TCF with benzo[1,2-b:4,5-b′]dithiophene (BDT) unit as electron bridge was synthesized and characterized by UV–vis, NMR spectroscopy, and thermal analysis. It is the first time that BDT unit was introduced into NLO materials. The chromophore showed excellent solubility in most common solvents, and good thermal stability for practical applications. The second order nonlinear optical effect was measured by hyper Rayleigh scattering method. The diagonal hyperpolarizability βzzz of BDT–TCF was 8.2 × 10?28 and 9.3 × 10?29 esu in THF solvent and in PMMA polymer matrices, respectively. The potential NLO response indicates that BDT unit is a promising π-electron bridge and an excellent candidate for nonlinear optical devices.  相似文献   

12.
Carbon nanofibers embedded with ultrafine zirconia nanoparticles (ZrO2-CNFs) are fabricated via a new methodology. Polyvinylpyrrolidone (PVP) and polymethylmethacrylate (PMMA) binary polymers containing zirconium n-butoxide are first dissolved in dimethylformamide, and the resulting solution is electrospun and heat-treated. The tetragonal zirconia nanoparticles formed, with a size of 5 ± 2 nm in diameter, are uniformly distributed in the carbon nanofibres. Using Nafion as an additive, ZrO2-CNFs are drop-cast onto the glassy carbon electrode (ZrO2-CNF/GCE) and the modified electrode is then applied to detect methyl parathion (MP) using differential pulse voltammetry. Two linear relationships are found at the concentration ranges of 1 × 10 9–2 × 10 8 g/L and 2 × 10 8–2 × 10 7 g/L, with a detection limit of 3.4 × 10 10 g/L (S/N > 3). The electrospun-based ZrO2-CNF is a very promising coating material for electrochemical sensing of organophosphorus compounds.  相似文献   

13.
Novel Schiff base Cu(II), Ni(II), Co(II) and Zn(II) complexes have been designed and synthesized using the macrocyclic ligand derived from the condensation of diethylphthalate with Schiff base, obtained from benzene-1,2-diamine and 3-benzylidene-pentane-2,4-dione. The ligand and its complexes have been characterized by analytical and spectral techniques. DNA binding properties of these complexes have been investigated by UV–vis, viscosity measurements, cyclic voltammetric and differential pulse voltammogram studies. The intrinsic binding constants for Co(II), Ni(II), Cu(II) and Zn(II) complexes are 1.6 × 106, 1.8 × 106, 2.0 × 106 and 1.5 × 106 M?1 respectively which are obtained from electronic absorption experiment. Control DNA cleavage experiments using pUC19 supercoiled (SC) DNA and minor groove binder (distamycin) suggest the major groove binding tendency for the synthesized complexes. In the presence of a reducing agent like 3-mercaptopropionic acid (MPA), the synthesized complexes show chemical nuclease activity under dark reaction condition. The complexes also show efficient photo-induced DNA cleavage activity on irradiation with a monochromatic UV light of 360 nm in the presence of inhibitors. Control experiments show inhibition of cleavage in the presence of singlet oxygen quencher like sodium azide and enhancement of cleavage in D2O, suggesting the formation of singlet oxygen as a reactive species in a type-II process.  相似文献   

14.
In the present investigation, p-morpholinomethylcalix[4]arene (1) has been examined as a carrier in supported liquid membrane (SLM) for Cu(II) transport. The influence of different parameters, such as solvent, membrane dipping time, support membrane, co-anions, donor and acceptor pH, and carrier concentration on Cu(II) transport, was checked. The permeability values were calculated by using Danesi mass transfer model. Higher Cu(II) permeability was observed in diphenyl ether, with 1 h dipping time, Celgard 2500 and Cl? as co-anion. The optimum pH for donor phase was 2 and that for acceptor phase was neutral at 10?3 M carrier concentration. Diffusion coefficients were calculated using Reinhoudt's model, lag time measurements as well as by Wilke–Chang relation and compared. The transport was found to be diffusion-controlled in the membrane phase and the diffusion coefficient was calculated to be 1.54 × 10?10 m/s whereas the extraction constant was calculated to be 1.19 × 10?5 m/s.  相似文献   

15.
Several multinuclear ferrocenyl–ethynyl complexes of formula [(η5-C5H5)(dppe)MII?CC–(fc)n–CC–MII(dppe)(η5-C5H5)] (fc = ferrocenyl; dppe = Ph2PCH2CH2PPh2; 1: MII = Ru2+, n = 1; 2: MII = Ru2+, n = 2; 3: MII = Ru2+, n = 3; 4: MII = Fe2+, n = 2; 5: MII = Fe2+, n = 3) were studied. Structural determinations of 2 and 4 confirm the ferrocenyl group directly linked to the ethynyl linkage which is linked to the pseudo-octahedral [(η5-C5H5)(dppe)M] metal center. Complexes of 15 undergo sequential reversible oxidation events from 0.0 V to 1.0 V referred to the Ag/AgCl electrode in anhydrous CH2Cl2 solution and the low-potential waves have been assigned to the end-capped metallic centers. The solid-state and solution-state electronic configurations in the resulting oxidation products of [1]+ and [2]2+ were characterized by IR, X-band EPR spectroscopy, and UV–Vis at room temperature and 77 K. In [1]+ and [2]2+, broad intervalence transition band near 1600 nm is assigned to the intervalence transition involving photo-induced electron transfer between the Ru3+ and Fe2+ metal centers, indicating the existence of strong metal-to-metal interaction. Application of Hush’s theoretical analysis of intervalence transition band to determine the nature and magnitude of the electronic coupling between the metal sites in complexes [1]+ and [2]2+ is also reported. Computational calculations reveal that the ferrocenyl–ethynyl-based orbitals do mix significantly with the (η5-C5H5)(dppe)Ru metallic orbitals. It clearly appears from this work that the ferrocenyl–ethynyl spacers strongly contribute in propagating electron delocalization.  相似文献   

16.
A simple, sensitive and accurate spectrophotometric method has been described for the assay of diphenhydramine hydrochloride (DPH) in raw material and in biological samples. The method is based on extraction of DPH into dichloromethane as ion-pair complexes with patent blue (PB), eriochrome black T (EBT), methyl orange (MO) and bromocresol purple (BCP) in acidic medium. The coloured species exhibited absorption maxima at 632, 514, 428 and 414 nm for PB, EBT, MO and BCP, with molar absorptivity values of 1.32 × 105, 2.36 × 104, 3.68 × 104 and 3.07 × 104 l mol?1 cm?1, respectively. The reaction conditions were optimized to obtain the maximum colour intensity. Beer’s law was obeyed with a good correlation coefficient (0.9982–0.9993) in the concentration ranges 0.5–3, 2.0–16, 2.0–10 and 1.0–10 μg ml?1 for PB, EBT, MO and BCP methods, respectively. The composition ratio of the ion-association complexes was found to be 1:1 in all cases as established by Job’s method. The conditional stability constant (Kf) and the free energy changes (ΔG°) were determined for all complexes formed. The proposed method was successfully applied for the determination of DPH in tablets and human urine with good accuracy and precision. Statistical comparison of the results with those obtained by the official method showed good agreement and indicated no significant difference in accuracy and precision.  相似文献   

17.
The effects of swift heavy ion irradiation on the structural characteristics of Polyethylene naphthalate (PEN) were studied. Samples were irradiated in vacuum at room temperature by lithium (50 MeV), carbon (85 MeV), nickel (120 MeV) and silver (120 MeV) ions with the fluence in the range of 1×1011–3×1012  ions cm−2. Ion induced changes were analyzed using X-ray diffraction (XRD), Fourier transform infra red (FT-IR), UV–visible spectroscopy, thermo-gravimetric analysis (TGA) and differential scanning calorimetry (DSC) techniques. Cross-linking was observed at lower doses resulting in modification of structural properties, however higher doses lead to the degradation of the investigated polymeric samples.  相似文献   

18.
A kinetic spectrophotometric method for the determination of thiocyanate, based on its inhibitory effect on silver(I) catalyzed substitution of cyanide ion, by phenylhydrazine in hexacyanoferrate(II) is described. Thiocyanate ions form strong complexes with silver(I) catalyst which is used as the basis for its determination at trace level. The progress of reaction was monitored, spectrophotometrically, at 488 nm (λmax of [Fe(CN)5PhNHNH2]3?, complex) under the optimum reaction conditions at: 2.5 × 10?3 M [Fe(CN)6]4?, 1.0 × 10?3 M [PhNHNH2], 8.0 × 10?7 M [Ag+], pH 2.8 ± 0.02, ionic strength (μ) 0.02 M (KNO3) and temperature 30 ± 0.1 °C. A linear relationship obtained between absorbance (measured at 488 nm at different times) and inhibitor concentration, under specified conditions, has been used for the determination of [thiocyanate] in the range of 0.8–8.0 × 10?8 M with a detection limit of 2 × 10?9 M. The standard deviation and percentage error have been calculated and reported with each datum. A most plausible mechanistic scheme has been proposed for the reaction. The values of equilibrium constants for complex formation between catalyst–inhibitor (KCI), catalyst–substrate (Ks) and Michaelis–Menten constant (Km) have been computed from the kinetic data. The influence of possible interference by major cations and anions on the determination of thiocyanate and their limits has been investigated.  相似文献   

19.
A novel flow-injection chemiluminescence (CL) method for the determination of dihydralazine sulfate (DHZS) is described. The method is based on the reaction of luminol and diperiodatocuprate (K2[Cu(H2IO6)(OH)2], DPC) in alkaline medium to emit CL, which is greatly enhanced by DHZS. The possible CL mechanism was first proposed based on the kinetic characteristic, CL spectrum and UV spectra. The optimum condition for the CL reaction was in detail studied using flow-injection system. The experiments indicated that under optimum condition, the CL intensity was linearly related to the concentration of DHZS in the range of 7.0 × 10?9 to 8.6 × 10?7 g mL?1 with a detection limit (3σ) of 2.1 × 10?9 g mL?1. The proposed method had good reproducibility with the relative standard deviation 3.1% (n = 7) for 5.2 × 10?8 g mL?1 of DHZS. This method has the advantages of simple operation, fast response and high sensitivity. The special advantage of the system is that very low concentration of luminol can react with DPC catalyzed by DHZS to get excellent experiment results. And CL cannot be observed nearly when luminol with same concentration reacts with other oxidants, so luminol–DPC system has higher selectivity than other luminol CL systems. The method has been successfully applied to determine DHZS in serum.  相似文献   

20.
A series of novel neutral nickel complexes, aryl (phenyl or naphthyl) nickel N-alkyl-6-(1-(arylimino)ethyl)picolinamides, were synthesized and characterized by NMR and IR spectroscopy and elemental analysis. Single-crystal X-ray diffraction analyses of the complexes C2, C3 and C7 reveal distorted square-planar geometry along with the molecular structure of one free ligand L1. On activation with diethylaluminum chloride (Et2AlCl), the nickel complexes exhibited moderate catalytic activities for ethylene oligomerization, and the catalytic activity was up to 2.45 × 105 g mol?1(Ni) h?1 in the presence of 1 equiv. PPh3. Moreover, these complexes also exhibit moderate activities for Kumada–Corriu reaction and polymerization of methyl methacrylate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号