首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
New polyester–sulfur compositions with increased tensile strength were obtained by using new thiopolyesters crosslinkable with sulfur, derived from diphenylmethane-4,4′-di(methylthiopropionic acid) and ethanediol (E-P) or 2,2′-oxydiethanol (ODE-P). Such characteristics as hardness, tensile, thermomechanical, as well as some electrical properties were determined. The structure of these compositions was investigated by solid-state 13C-NMR spectroscopy. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2231–2238, 1997  相似文献   

2.
Two series of new linear polyesters containing sulfur in the main chain were obtained by melt polycondensation of naphthalene-1,4-bis(methylthioacetic acid) (N-1,4-BMTAA) or naphthalene-1,5-bis(methylthioacetic acid) (N-1,5-BMTAA) with some aliphatic diols using a 0.05 molar excess of diol. Softening temperatures ranging from 55 to 130°C, reduced viscosities in the range of 0.15–0.39 dL/g, and low-molecular weights were their characteristic. The structure and thermal properties of all polyesters were examined by using elemental analysis, FT-IR and 1H-NMR spectroscopy, X-ray diffraction analysis, differential thermal analysis (DTA), thermogravimetric analysis (TGA), and differential scanning calorymetry (DSC). The kinetics of polyester formation by uncatalyzed melt polycondensation was studied in a model system: N-1,4-BMTAA or N-1,5-BMTAA and 2,2′-oxydiethanol (ODE) at 150, 160, and 170°C. Reaction rate constants (k3) and activation parameters (ΔG, ΔH, ΔS) from carboxyl group loss were determined using classical kinetic methods. Hydroxyl-terminated polyesters derived from 1,4-butanediol, 1,5-pentanediol, and 1,6-hexanediol were used for preparation of the polyurethanes by melt polyaddition with hexamethylene diisocyanate (HDI). They were characterized by reduced viscosity, FT-IR spectroscopy, X-ray diffraction analysis, TGA, DSC, polarizing microscope observation, and hardness and tensile properties. The resulting polyurethanes behave like high-elasticity thermoplastic elastomers, except the one derived from N-1,5-BMTAA and 1,6-hexanediol-based polyester. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. A Polym. Chem. 36: 2359–2369, 1998  相似文献   

3.
New linear polyesters containing sulfur in the main chain were obtained by melt polycondensation of diphenylmethane‐4,4′‐bis(methylthioacetic acid) (DBMTAA) or diphenylmethane‐4,4′‐bis(methythiopropionic acid) (DBMTPA) and diphenylmethane‐4,4′‐bis(methylthioethanol) (DBMTE) at equimolar ratio of reagents (polyesters E‐A and E‐P) as well as at 0.15 molar excess of diol (polyesters E‐AOH and E‐POH). The kinetics of these reactions was studied at 150, 160, and 170°C. Reaction rate constants (k2) and activation parameters (ΔG, ΔH, ΔS) from carboxyl group loss were determined using classical kinetic methods. E‐A and E‐P (n = 4400, 4600) were used for synthesis of new rubber‐like polyester‐sulfur compositions, by heating with elemental sulfur, whereas oligoesterols E‐AOH and E‐POH (M̄n = 2500, 2900) were converted to thermoplastic polyurethane elastomers by reaction with hexamethylene diisocyanate (HDI) or methylene bis(4‐phenyl isocyanate) (MDI). The structure of the polymers was determined by elemental analysis, FT‐IR and liquid or solid‐state 1H‐, 13C‐NMR spectroscopy, and X‐ray diffraction analysis. Thermal properties were measured by DTA, TGA, and DSC. Hardness and tensile properties of polyurethanes and polyester‐sulfur compositions were also determined. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 835–848, 1999  相似文献   

4.
Results are reported on the effect of lateral methyl groups on the thermal properties of a series of polyesters prepared from diethyl 4,4′-biphenyldicarboxylate and various methyl substituted 1,4-butanediols. The diols were 1,4-butanediol; 2-methyl-1,4-butanediol; 2,2-dimethyl-1,4-butanediol; 2,3-dimethyl-1,4-butanediol; 2,2,3-trimethyl-1,4-butanediol; and 2,2,3,3-tetramethyl-1,4-butanediol. Apart from the tetramethyl derivatve, the transition temperatures of the methyl substituted polyesters were lower with respect of the unsubstituted polyester. On the basis of polarized photomicrographs, a smectic A mesophase was found for the unsubstituted polyester, whereas a nematic mesophase was observed for the 2-methyl substituted polyster. The 2,2-dimethyl, 2,3-dimethyl, and the 2,2,3-trimethyl substituted polyesters showed no liquid crystalline behavior. The 2,2,3,3-tetramethyl derivative displayed a birefringent melt phase although the DSC measurements were not unambiguous. A copolyester based on diethyl 4,4′-biphenyldicarboxylate, 1,4-butanediol, and 2,2,3,3-tetramethyl-1,4-butanediol showed a broad nematic mesophase. Further evidence for the nematic mesophase of this copolyester and the 2-methyl substituted polyester was provided by dynamic rheological experiments. Based on thermogravimetric analysis, it was concluded that the thermal stability was affected only when four methyl side groups were present in the spacer. © 1995 John Wiley & Sons, Inc.  相似文献   

5.
In our recent overview of liquid crystalline polyesters of trans-4,4′-stilbenedicarboxylic acid (SDA) and aliphatic glycols,1 we reported that “… the 1,3-propanediol polyester did not exhibit thermotropic liquid crystallinity (no stir opalescence or DSC endotherm above Tm), perhaps because of the relatively high Tm (303°C) for a polymer of a glycol having an odd number of carbon atoms.” We now have studied the melting characteristics of another sample of this polymer more carefully and have concluded that it does exhibit a liquid crystalline mesophase over a very narrow temperature range. In this Note we give the thermal properties of this polymer and the thermal and mechanical properties of an SDA/1,3-propanediol copolyester which we also injection molded. These properties are compared and contrasted with those of the similar polyester and copolyester prepared with 1,4-butanediol instead of 1,3-propanediol.  相似文献   

6.
Abstract

Seven aromatic dicarboxylic acids were esterified by melt polycondensation in two steps with 1,3‐propanediol (1,3‐PDO) in the presence of tetrabutoxytitanium as catalyst. The acids used were: terephthalic (TPA), isophthalic (IPA), naphthalene‐2,6‐dicarboxylic (2,6‐NDA), naphthalene‐1,4‐dicarboxylic (1,4‐NDA), biphenyl‐4,4‐dicarboxylic (4,4‐BPDA), diphenylsulfone‐4,4‐dicarboxylic (4,4‐DPSDA), and pyridine‐2,6‐dicarboxylic acid (2,6‐PDA). In the first step, the esterification reaction was monitored, by measuring the distilled water. The prepared oligomers were polycondensated in a second step under high vacuum using the same catalyst as before. The received poly(propylene dicarboxylate)s were characterized by viscometry, carboxyl end‐group content (CC), color measurement, and were studied by differential scanning calorimetry (DSC). From this study, the above polyesters could be classified to three classes: (a) easily crystallizing polyesters derived from TPA and 2,6‐PDA, (b) slow crystallizing polyesters derived from IPA and 2,6‐NDA, and (c) amorphous polyesters derived from 1,4‐NDA, 4,4‐BPDA, and 4,4‐DPSDA.  相似文献   

7.
Long-chain, symmetrically unsaturated α,ω-dicarboxylic acid methyl esters (C18, C20, C26) were obtained by the catalytic metathetical condensation of 9-decenoic, 10-undecenoic, and 13-tetradecenoic acid methyl esters, respectively, with the homogeneous Grubbs catalyst bis(tricyclohexyl phosphine) benzylidene ruthenium dichloride dissolved in methylene chloride. The dicarboxylic acid esters were epoxidized chemoenzymatically with H2O2/methyl acetate with Novozym 435®, an immobilized lipase B from Candida antarctica. Polyesters from symmetrically unsaturated or epoxidized α,ω-dicarboxylic acid methyl esters with 1,3-propanediol or 1,4-butanediol, respectively, were achieved by enzymatic polycondensation with the same biocatalyst applied. With 1,3-propanediol as a substrate, the linear unsaturated and epoxidized polyesters had molecular weights of 1950–3300 g/mol and melting points of 47–75 °C, whereas with 1,4-butanediol as a substrate, the resulting polyesters showed higher molecular weights, 7900–11,600 g/mol, with similar melting points of 55–74 °C. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1601–1609, 2001  相似文献   

8.
A systematic study of poly(methylene terephthalates) has been made. Melting points, second-order transition temperatures, and solubility temperatures are presented for the homologous series of terephthalate polyesters of ethylene glycol through 1,10-dodecanediol, and for terephthalate copolyesters of: (1) ethylene glycol/1,3-propanediol and (2) ethylene glycol/1,4-butanediol. Fiber properties of the terephthalate polyesters and the 70/30 ethylene glycol/1,3-propanediol copolyterephthalate ester are presented. Only the first three members of the poly(methylene terephthalate) series show promise for use in textile fibers.  相似文献   

9.
Based on the anhydrides like hexolic (5,6,7,8,10,10-hexachloro -3a,4,4a,5,8,8a,9,9a-octahydro-5,8-methanonaphtho-[2,3-c]-furan-1,3-dione), maleic and phthalic and diols like 1,4-butanediol, cis-2-butene-1,4-diol and 2,3-dichloro-2-butene-1,4-diol, a family of polyesters has been synthesized using azeotropic condensation technique. The structural characterizations of the polyesters have been carried out using infra-red, 1H - and 13C- nuclear magnetic resonance spectroscopic methods. The thermal properties of the polyesters have been studied using thermogravimetric technique. The off-line pyrolysis of these materials was done. The qualitative and semi-quantitative analyses of the volatiles as well as the heavy mass fractions of the degradation products were carried out using a gas chromatograph coupled to a mass selective detector (GC-MSD). Thermogravimetric data indicate that the thermal stability and the char residue of the polyester resins decrease in the order 1,4-butanediol based>cis-2-butene-1,4-diol based>2,3-dichloro-2-butene-1,4-diol based polyesters. The GC-MSD data indicate that the amount of flame cooling agents (hexa-, isomeric penta-, tetra- and isomeric tri-chlorocyclopentadienes) produced during the pyrolysis of the polyesters increases in the order 2,3-dichloro-2-butene-1,4-diol based<cis-2-butene-1,4-diol based<1,4-butanediol based polyesters. The trends observed in these two parameters which are contributing factors to the flame retardancy of the polyester materials were suitably explained on the basis of the effect of the structural changes in the diol part of the polyesters on the primary degradation mechanism, the β-chain scission process.  相似文献   

10.
Abstract

The aliphatic polyesters are normally synthesized by ester interchange reactions or direct esterification of hydroxyacids or diacid/diol combinations. Biotransformation, utilizing the enzymes as catalysts, was accepted as an alternative route for the synthesis of aliphatic polyesters and offers various advantages compared with the conventional, metal-catalyzed polymerization reactions. Previous studies indicated that lipase-catalyzed polycondensation reactions between diols and diacids occurred preferentially at primary hydroxyl groups of diols, when diols contained both primary and secondary hydroxyl groups. In this work, we investigated lipase-catalyzed polycondensation of diacids and secondary hydroxyl group–containing diols, and successfully synthesized polyesters by polycondensation with secondary hydroxyl groups as well as primary hydroxyl groups. Various diols, glycerol, 1,2-propanediol, 1,3-butanediol, 2,3-butanediol, and 2,4-pentanediol were tested for the polycondensation. The polymerization was achieved by heating a mixture of lipase B, sebacic acid, and the diols in anhydrous toluene at 100 °C for 72 h. The resulting polymers were characterized by 1H and 13C NMR spectroscopy, Fourier transform–infrared spectroscopy, thermogravimetric analysis, and gel permeation chromatography.  相似文献   

11.
Polyamides and polyesters based on neocarboranedicarboxylie dichloride and previously not described have been prepared by low-temperature polycondensation in solution and characterized. In preparing the polyamides, the following diamines were used: benzidine, hexamethylenediamine, m-phenylenediamine, p-phenylenediamine, 4,4′-diaminodiphenyl ether, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenyl sulfide, and hydroquinone diaminodiphenyl ester. Polyesters were obtained by using the following diols: phenolthalein, hydroquinone, 4,4′-dihydroxydiphenylpropane, 9,9-dihydroxydiphenylfluorene, 1,6-hexanediol, and ethylene glycol. The resulting neocarborane polyesters melt and are easily soluble in tetrahydrofuran, amide solvents, and chloroform. The neocarborane polyamides described do not melt, are readily soluble in tetrahydrofuran and dimethylformamide, and form transparent films; they are thermostable in an inert at mosphere at high temperatures.  相似文献   

12.
The assisted thermal degradation of poly(diethyleneglycol-bis-allyl carbonate), poly-CR 39, has been investigated at 300°C, under nitrogen or argon, in the presence of the metals, Fe, Cu and Zn. The major decomposition products are carbon dioxide, ethene, propene, 1,4-dioxane, 2-propen-1-ol, 2,2′-oxydiethanol carbonate, 2,2′-oxydiethanol and 1,2-di(2′-hydroxy)ethoxy ethane. A degradation mechanism is proposed.  相似文献   

13.
High Tg amorphous copolyester thermoplastics were synthesized by incorporating 4,4′‐bibenzoate (4,4′BB) and 3,4′‐bibenzoate moieties into the polyester backbone via melt polycondensation. The high levels of crystallinity typically associated with 4,4′BB containing polyesters were suppressed through copolymerization of ethylene glycol, 1,4‐cyclohexane dimethanol, and neopentyl glycol (NPG) diols. NPG was shown to be highly effective in suppressing crystallization and was used to produce amorphous compositions with Tg’s as high as 129 °C. Diol ratios were determined by 1H NMR spectroscopy and molecular weights were assessed with inherent viscosity (ηinh). Thermogravimetric analysis showed single‐step weight losses in the range of 395 – 419 °C. Differential scanning calorimetry was used to determine melting points and glass transition temperatures over a wide range of copolyester compositions and identified amorphous compositions. Dynamic mechanical analysis confirmed Tg’s and was used to study β‐relaxations below the Tg. Rheological analysis revealed the effect of NPG structures on shear thinning and thermal stability. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 579–587  相似文献   

14.
Aromatic polyesters connected by methylene groups were synthesized. Two pairs of aromatic diacid chlorides, 3,3′-methylenedibenzoyl chloride and 4,4′-methylenedibenzoyl chloride were each polymerized via interfacial polycondensation with 2,2-bis(4-hydroxyphenyl)propane (bisphenol A), 3,3′-methylenediphenol, and 4,4′-methylenediphenol. For comparison, 3,3′-carbonyldibenzoyl chloride and 4,4′-carbonyldibenzoyl chloride were similarly polymerized with bisphenol A. Substitution of meta,meta' oriented phenylene groups for para,para' oriented phenylene groups had a significant and cumulative effect in reducing the glass transition temperatures of the polymers, thereby enhancing their processability. In air the methylene groups of the polyesters undergo oxidation and crosslinking at elevated temperatures. Electron beam irradiation of thin films of the methylene-linked polyesters at room temperature resulted in some chain extension and crosslinking, as evidenced by increased solution viscosity and gel formation. Irradiation at a temperature near or above the glass transition temperatures of the polymers greatly enhanced the tendency for the polymers to crosslink.  相似文献   

15.
A series of new wholly aromatic polyesters was synthesized by melt polycondensation of 1-phenyl-2,6-naphthalenedicarboxylic acid (PNDA) and diacetates of various aromatic diols. The aromatic diols studied are hydroquinone (HQ), methylhydroquinone (MHQ), phenylhydroquinone (PHQ), (α-phenylisopropyl)hydroquinone (PIHQ), 2,6-naphthalenediol (2,6-ND), 1,4-naphthalenediol (1,4-ND), and 4,4′-biphenol (BP). These polyesters were characterized for their crystallinity, glass transition temperature (Tg), melting temperature (Tm), liquid crystallinity, and thermal stability. In general, crystallinity of the polyesters are very low and the Tg values of the polyesters range from 150 to 172°C depending on the structure of aromatic diols. All of the polymers formed nematic phases above their Tm or Tg. The polyesters derived from PHQ and PIHQ are soluble in chlorinated hydrocarbon solvents. The initial decomposition temperatures of the polyesters are above 400°C under N2 atmosphere. © 1996 John Wiley & Sons, Inc.  相似文献   

16.
Poly(benzobisthiazole)s containing an ortho-tetramethyl substituted biphenyl moiety were synthesized via the polycondensation of 2,5-diamino-1,4-benzenedithiol dihydrochloride with 2,2′,6,6′-tetramethylbiphenyl-4,4′-dicarboxylic acid in poly(phosphoric acid) (PPA). The intrinsic viscosities of the tetramethylbiphenyl poly-(benzobisthiazole)s in chlorosulfonic acid at 30°C were in the range of 6.9–13.4 dL/g. Copolycondensation of 2,5-diamino-1,4-benzenedithiol dihydrochloride with terephthalic acid and 2,2′,6,6′-tetramethylbiphenyl-4,4′-dicarboxylic acid was carried out as well by varying the ratio of the two dicarboxylic acid monomers in the reactant mixture. The homopolymers and copolymers were characterized by Fourier transform infrared spectroscopy (FTIR) and 13C solid-state nuclear magnetic resonance spectroscopy (NMR). Thermal stability of the polymers was evaluated by thermogravimetric analysis (TGA) and thermogravimetric mass spectrum analysis (TG-MS). The tetramethylbiphenyl poly(benzobisthiazole)s were found to be more stable at elevated temperatures than the parent poly(p-phenylene benzobisthiazole) (PBZT). © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1407–1416, 1998  相似文献   

17.
4,4′‐hexafluoroisopropylidene‐2,2‐bis‐(phthalic acid anhydride) (1) was reacted with L ‐methionine (2) in acetic acid and the resulting N,N′–(4,4′‐hexafluoroisopropylidenediphthaloyl)‐bis‐L ‐methionine (4) was obtained in high yield. The direct polycondensation reaction of this diacid with several aromatic diols such as bisphenol A (5a), phenolphthalein (5b), 1,4‐dihydroxybenzene (5c), 4,4′‐dihydroxydiphenyl sulfide (5d), 4,6‐dihydroxypyrimidine (5e), 4,4′‐dihydroxydiphenyl sulfone (5f) and 2,4′‐dihydroxyacetophenone (5g) was carried out in a system of thionyl chloride and pyridine. Expecting that the reaction with thionyl chloride in pyridine might involve alternative intermediates different from an acyl chloride, the polycondensation at a higher temperature favorable for the reaction of the expected intermediate with nucleophiles was attempted, and a highly thermally stable poly(ester‐imide) was obtained by carrying out the reaction at 80°C. All of the above polymers were fully characterized by 1H‐NMR, 19F‐NMR FT‐IR spectroscopy, elemental analysis and specific rotation. Some structural characterization and physical properties of these optically active poly(ester‐ imide)s are reported. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
Poly{bis(4,4′‐tert‐butyl‐2,2′‐bipyridine)–(2,2′‐bipyridine‐5,5′‐diyl‐[1,4‐phenylene])–ruthenium(II)bishexafluorophosphate} ( 3a ), poly{bis(4,4′‐tert‐butyl‐2,2′‐bipyridine)–(2,2′‐bipyridine‐4,4′‐diyl‐[1,4‐phenylene])–ruthenium(II)bishexafluorophosphate} ( 3b ), and poly{bis(2,2′‐bipyridine)–(2,2′‐bipyridine‐5,5′‐diyl‐[1,4‐phenylene])–ruthenium(II)bishexafluorophosphate} ( 3c ) were synthesized by the Suzuki coupling reaction. The alternating structure of the copolymers was confirmed by 1H and 13C NMR and elemental analysis. The polymers showed, by ultraviolet–visible, the π–π* absorption of the polymer backbone (320–380 nm) and at a lower energy attributed to the d–π* metal‐to‐ligand charge‐transfer absorption (450 nm for linear 3a and 480 nm for angular 3b ). The polymers were characterized by a monomodal molecular weight distribution. The degree of polymerization was approximately 8 for polymer 3b and 28 for polymer 3d . © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2911–2919, 2004  相似文献   

19.
Some members of four series of polyesters were synthesized by the direct polycondensation of two types of dicarboxylic acids (4,4′-dicarboxy-α,ω-diphenoxyalkanes and 4,4′-dicarboxy-α,ω-dibenzoyloxyalkanes) with two types of bisphenols (4,4′-dihydroxy-α,ω-diphenoxyalkanes and 4,4′-dihydroxy-α,ω-dibenzoyloxyalkanes) using tosyl chloride in pyridine in the presence of N, N-dimethylformamide. The 1H-NMR spectra of the polymers synthesized showed that these polymers have an ordenated structure. The mesogenic properties of these polymers were studied by optical microscopy and differential scanning calorimetry. Many of the polymers show nematic mesomorphism.  相似文献   

20.
Excess molar enthalpies (H m E) of ternary mixtures containing water+(1,2-propanediol or 1,3-propanediol or 1,2-butanediol or 1,3-butanediol or 1,4-butanediol or 2,3-butanediol)+(sodium bromide, or ammonium bromide, or tetraethyl ammonium bromide, or 1-n-butyl-3-methylimidazolium bromide at 0.1 mol⋅dm−3) at 298.15 K and atmospheric pressure have been determined as a function of composition using a modified 1455 Parr mixture calorimeter. The H m E values are negative for all mixtures over the whole composition range. The influence of the electrolyte on the hydrophobic and hydrophilic effects as well as on the behavior of H m E is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号