首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poly(1,1‐bis(ethoxycarbonyl)‐2‐vinyl cyclopropane (ECVP)‐graft‐dimethyl siloxane) copolymers were prepared using a macromonomer approach. Poly(dimethyl siloxane) (PDMS) macromonomers were prepared by living anionic polymerization of cyclosiloxanes followed by sequential chain‐end capping with allyl chloroformate. These macromonomers were then copolymerized with ECVP. MALDI‐ToF mass spectrometry and 1H NMR spectroscopy were used to show that the macromonomers had approximately 80% of the end groups functionalized with allyl carbonate groups. Gradient polymer elution chromatography showed that high yields of the graft copolymers were obtained, along with only small fractions of the PECVP and PDMS homopolymers. Differential scanning calorimetry showed that the low glass transition temperature (Tg) of the PDMS component could be maintained in the graft copolymers. However, the Tg was a function of polymer composition and the polymers produced had Tgs that ranged from ?50 to ?120 °C. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

2.
5-(3-Cyclohexen-1-yl)-2-norbornene [CHNB] has been shown to form a very lightly crosslinked polymer (Tg = 127°C) with good elongation via ring-opening metathesis polymerization (ROMP). Based on swelling behavior with added norbornadiene dimer, the low crosslink density is ascribed to ≪0.5% participation by the cyclohexenyl ring. Compared to dicyclopentadiene (DCPD), CHNB polymerizations were less exothermic, required less catalyst, and exhibited greater molding latitude, which are advantageous for Reaction Injection Molding (RIM). Styrene-isoprene and styrene-ethylene/butylene block copolymers were effective impact modifiers for polyCHNB, forming large particle morphologies. Small rubber particles formed from styrene-butadiene block copolymers were not effective for impact enhancement of polyCHNB, in contrast to polyDCPD. Rubber-modified polyCHNB retained impact resistance four to six times longer than polyDCPD samples when aged in air at 50–70°C. Related RIM-ROMP of liquid monomer mixtures prepared by cyclopentadiene cycloadditions with 4-vinyl-1-cyclohexene, cis-1,3-divinylcyclopentane, 3,5-divinylcyclopentene or cis-2,4-divinylbicyclo[3.3.0]oct-6-ene formed highly crosslinked, less ductile copolymers with Tgs as high as 206°C. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 3049–3063, 1997  相似文献   

3.
Polymerized ionic liquids (PILs) are a platform for fundamental studies of structure‐property relationships in single ion conductors, with potential applications in energy storage and conversion. The synthesis, thermal properties, and ionic conductivities of homologous, narrow dispersity styrenic PILs are described. Hydrophilic poly(4‐vinylbenzyl alkylimidazolium chloride) (PVBn(alkyl)ImCl) homopolymers with constant average degrees of polymerization were synthesized by post‐synthetic functionalization of a poly(4‐vinylbenzyl chloride) (Mn = 15.9 kg/mol, Mw/Mn = 1.34) master batch with N‐alkylimidazoles (alkyl = ? CH3 (Me), ? C4H9 (Bu), and ? C6H13 (Hex)). The chloride counterions of PVBnHexImCl were exhaustively metathesized with BF, PF, and bis(trifluoromethanesulfonyl)imide (TFSI?) to yield a series of hydrophobic PILs. Thermogravimetric analyses indicate that PVBn(alkyl)ImCl homopolymers are unstable above 220 °C, whereas the hydrophobic PILs remain stable up to 290 °C. The glass transition temperatures (Tg) decrease with both increasing alkyl side‐chain length and increasing counterion size, exemplified by Tg = 9 °C for PVBnHexImTFSI. Hydrophilic PILs exhibit high ionic conductivities (as high as ~0.10 S cm?1) that depend on the relative humidity, water uptake, and the PIL side chain length. The hydrophobic PILs exhibit lower conductivities (up to ~5 × 10?4 S cm?1) that depend predominantly on the polymer Tg, however, counterion size and symmetry also contribute. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1287–1296, 2011  相似文献   

4.
Block, random, and gradient copolymers of styrene (S) and acrylic acid (AA) are synthesized by conventional or controlled radical polymerization, and their glass transition temperature (Tg) behaviors are compared. The location and breadth of the Tgs are determined using derivatives of differential scanning calorimetry heating curves. Each S/AA random copolymer exhibits one narrow Tg, consistent with a single phase of limited compositional nanoheterogeneity. Block copolymers exhibit two narrow Tgs originating from nanophase separation into ordered domains with nearly pure S or nearly pure AA repeat units. Each gradient copolymer exhibits a Tg response with a ~50–56 °C breadth that extends beyond the upper Tg of the block copolymers. For copolymers of similar composition, the maximum value in the gradient copolymer Tg response is consistent with that of a random copolymer, which has an enhanced Tg relative to poly(acrylic acid) due to more effective hydrogen bonding when AA units are separated along the chain backbone by S units. These results indicate that gradient copolymers with ordered nanostructures can be rationally designed, which exhibit broad glass transitions that extend to higher temperature than the Tgs observed with block copolymers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2842–2849, 2007  相似文献   

5.
A triamine monomer, 1,3,5‐tris(4‐aminophenoxy)benzene (TAPOB), was synthesized from phloroglucinol and 4‐chloronitrobenzene, and it was successfully polymerized into soluble hyperbranched polyimides (HB PIs) with commercially available dianhydrides: 4,4′‐(hexafluoroisopropylidene)diphthalic anhydride (6FDA), 4,4′‐oxydiphthalic anhydride (ODPA), and 3,3′,4,4′‐benzophenonetetracarboxylic dianhydride (BTDA). Different monomer addition methods and different monomer molar ratios resulted in HB PIs with amino or anhydride end groups. From 1H NMR spectra, the degrees of branching of the amino‐terminated polymers were estimated to be 0.65, 0.62, and 0.67 for 6FDA–TAPOB, ODPA–TAPOB, and BTDA–TAPOB, respectively. All polymers showed good thermal properties with 10% weight‐loss temperatures (T10's) above 505 °C and glass‐transition temperatures (Tg's) of 208–282 °C for various dianhydrides. The anhydride‐terminated HB PIs showed lower T10 and Tg values than their amino‐terminated counterparts. The chemical conversion of the terminal amino or anhydride groups of the 6FDA‐based polyimides into an aromatic imido structure improved their thermal stability, decreased their Tg, and improved their solubility. The HB PIs had moderate molecular weights with broad distributions. The 6FDA‐based HB PIs exhibited good solubility even in common low‐boiling‐point solvents such as chloroform, tetrahydrofuran, and acetone. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3804–3814, 2002  相似文献   

6.
Four well‐defined diblock copolymers and one statistical copolymer based on lauryl methacrylate (LauMA) and 2‐(acetoacetoxy)ethyl methacrylate (AEMA) were prepared using reversible addition‐fragmentation chain transfer (RAFT) polymerization. The polymers were characterized in terms of molecular weights, polydispersity indices (ranging between 1.12 and 1.23) and compositions by size exclusion chromatography and 1H NMR spectroscopy, respectively. The preparation of the block copolymers was accomplished following a two‐step methodology: First, well‐defined LauMA homopolymers were prepared by RAFT using cumyl dithiobenzoate as the chain transfer agent (CTA). Kinetic studies revealed that the polymerization of LauMA followed first‐order kinetics demonstrating the “livingness” of the RAFT process. The pLauMAs were subsequently used as macro‐CTA for the polymerization of AEMA. The glass transition (Tg) and decomposition temperatures (ranging between 200 and 300 °C) of the copolymers were determined using differential scanning calorimetry and thermal gravimetric analysis, respectively. The Tgs of the LauMA homopolymers were found to be around ?53 °C. Block copolymers exhibited two Tgs suggesting microphase separation in the bulk whereas the statistical copolymer presented a single Tg as expected. Furthermore, the micellization behavior of pLauMA‐b‐pAEMA block copolymers was investigated in n‐hexane, a selective solvent for the LauMA block, using dynamic light scattering. pLauMA‐b‐pAEMA block copolymers formed spherical micelles in dilute hexane solutions with hydrodynamic diameters ranging between 30 and 50 nm. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5442–5451, 2008  相似文献   

7.
Three arylene difluoride monomers containing phosphine oxide ( 1 ), phosphinic acid ( 2 ), or phosphinate ester ( 3 ) groups were prepared and polymerized with bisphenol A to give novel poly-(arylene ether)s ( 4 , 5 , and 6 ). The polymers obtained had moderate molecular weights (ηinh: 0.14–0.30 dL g−1 in N-methylpyrrolidinone) and glass-transition temperatures (Tg: 102–200 °C), depending on the phosphine group in the main chain. Using bis(4-fluorophenyl)sulfone as a comonomer improved the polymerization to give copolymers with higher solution viscosities. The stoichiometric investigation revealed that 7 mol % excess of fluoride monomer gave the highest molecular weight copolymer 8 with ηinh of 0.78 dL g−1, which had a Tg of 176 °C, a T of 432 °C, and formed a hard film by casting from solution. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1854–1859, 2001  相似文献   

8.
alt‐Copoly[1,9‐decaphenylpentasiloxanylene/1,3‐bis(ethylene)tetramethyldisiloxanylene], alt‐copoly[1,9‐decaphenylpentasiloxanylene/1,5‐bis(ethylene)hexamethyltrisiloxanylene], alt‐copoly[1,9‐decaphenylpentasiloxanylene/1,7‐bis(ethylene)octamethyltetrasiloxanylene], and alt‐copoly[1,9‐decaphenylpentasiloxanylene/1,9‐bis(ethylene)decamethylpentasiloxanylene] were synthesized by Pt‐catalyzed hydrosilylation reactions of 1,9 divinyldecaphenylpentasiloxanes with a series of oligodimethylsiloxanes. The molecular weights of these copolymers were determined by gel permeation chromatography. Their glass‐transition temperatures (Tg's) were obtained by differential scanning calorimetry. The thermal stabilities of the copolymers were measured by thermogravimetric analysis. The structures of the copolymers were verified by 1H, 13C, and 29Si NMR as well as IR and UV spectroscopy. The copolymers displayed high thermal stabilities and a single Tg, indicating that phase separation between the two short blocks did not occur. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6146–6152, 2005  相似文献   

9.
Copolymerization reactions between cyclic(arylene disulfide) oligomers were studied. The cyclic disulfide oligomers derived from 4,4′-isopropylidene bisbenzenethiol gave soluble polysulfanes via copolymerization with S8. The copolymerization reactions were studied both in solution and melt by GPC and NMR. Solution copolymerization reactions can only form polysulfanes with up to three to four sulfur linkages; however, melt copolymerization reactions gave polysulfanes with up to seven sulfur linkages (average). The melt copolymerization reactions between cyclic disulfide oligomers derived from 4,4′-thiobis(benzenethiol) and S8 were studied using DSC, TGA, and DMTA. With increasing contents of sulfur in the polysulfanes, Tgs, 5% weight losses by TGA, and tan δ decreased. With seven sulfur linkages in the polymer, it is a rubber with a Tg of 12°C, a 5% weight loss by TGA of 249°C, and tan δ of 44°C, respectively. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2961–2968, 1997  相似文献   

10.
We have designed and synthesized rod–coil–rod triblock copolymers of controlled molecular weight by two‐step nitroxide‐mediated radical polymerization, where the rod part consists of “mesogen‐jacketed liquid crystalline polymer” (MJLCP). The MJLCP segment examined in our studies is poly{2,5‐bis[(4‐methoxyphenyl)oxycarbonyl]styrene} (MPCS) while the coil part is polyisoprene (PI). Characterization of the triblock copolymers by GPC, 1H and 13C NMR spectroscopies, TGA, DSC confirmed that the triblock copolymers were comprised of microphase‐separated low Tg amorphous PI and high Tg PMPCS blocks. Analysis of POM and 1D, 2D‐WAXD demonstrated that the triblock copolymers formed nematic liquid crystal phase. Morphological studies using TEM indicated the sample formed lamellar structure. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5949–5956, 2007  相似文献   

11.
Metathesis polymerization of N-phenyl-exo-norbornene dicarboximide and ortho/meta/para methyl substituted phenyl nadimides was carried out using WCl6/tetramethyltin. Structural characterization was done by FTIR, 1H- and 13C-NMR. A mixture of cis and trans double bond structures were introduced in the backbone during polymerization. The cis content was higher (52 to 65%). In the DSC scan of poly(N-o-tolyl nadimide), two exotherms were observed at 240 and 270°C while in other samples only one exothermic transition was observed above 240°C. These exotherms disappeared in the second heating cycle. The Tg of the polymers, as determined in the second heating cycle, was highest in poly(N-o-tolyl nadimide) and lowest in poly(N-m-tolyl nadimide). The polymers were stable up to 443 ± 3°C and decomposed above this temperature in a single step. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2917–2924, 1997  相似文献   

12.
Polycondensations of dicarboxylic acids with diols having amide moieties derived from optically active amino alcohols were carried out. Polymers with M ns 8,700–17,400 were obtained by the polycondensations using 1.2 eq. of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC·HCl) in DMF at room temperature for 8 h in satisfactory yields. The Tg of the polymer rose with decrease of the methylene chain length of the dicarboxylic acid. In the Tgs of the polymers from L-leucinol, even-odd effect was observed with increase of the methylene chain length of the dicarboxylic acid. The molecular rotation values of the polymers were constant except for the polymer from succinic acid, which showed the negatively largest one. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2925–2934, 1997  相似文献   

13.
Glass transition temperatures (Tgs) of P(AMA‐co‐BA) copolymers and the corresponding homopolymers, where AMA is allyl methacrylate and BA is n‐butyl acrylate, obtained by means of atom transfer radical polymerization were measured using differential scanning calorimetry. Because of the (pseudoliving) nature of this polymerization technique an increase in molecular weight (MW) is produced as the reaction progresses, which gives rise to an increase in Tgs. This increment can be adequately described by the Fox–Flory's equation in both homopolymers. However, in the spontaneous gradient copolymers of P(AMA‐co‐BA), the expected increase in Tg with the augment of the monomer conversion is compensated by the enrichment of BA as the polymerization reaction progresses. These opposite effects with respect to the Tg values almost balance each other, and therefore no significant influence on the MW or on conversion is found. This fact establishes that Tgs can be used to describe the profile of these gradient copolymers, and can be theoretically determined because of its dependence on the molar fraction in the copolymer. From this dependence on chemical composition along with the experimental behavior, a prediction of the Tg variation with the MW was performed. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1845–1855, 2007  相似文献   

14.
We describe an original QSPR model called the EVM model (Energy, Volume, Mass) to calculate the glass transition temperature (Tg) of aliphatic acrylate and methacrylate homopolymers using classical molecular mechanics and dynamics. The latter was used to calculate an energy density function related to the cylindrical volume of a 20 monomer unit polymer segment (TSSV, Total Space around a Standard deviation Volume). We then calculated the Tg as a function of this density function and the repeat unit molecular weight, although no interchain interactions were taken into account. For linear and branched aliphatic acrylate and methacrylate polymers, the standard deviation from linear regression was 12 K, and the r2 was 0.96. The model allows calculation of the Tg with an average absolute error of error of 10% for linear and branched derivatives not included in the original linear regression analysis. The results obtained with the EVM model are compared with those obtained with Bicerano's model. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 2579–2590, 1997  相似文献   

15.
Nanoscale poly(methyl methacrylate) (PMMA) particles were prepared by modified microemulsion polymerization. Different from particles made by traditional microemulsion polymerization, the particles prepared by modified microemulsion polymerization were multichain systems. PMMA samples, whether prepared by the traditional procedure or the modified procedure, had glass-transition temperatures (Tg's) greater than 120 °C and were rich in syndiotactic content (55–61% rr). After the samples were dissolved in CHCl3, there were decreases in the Tg values for the polymers prepared by the traditional procedure and those prepared by the modified process. However, a more evident Tg decrease was observed in the former than in the latter; still, for both, Tg was greater than 120 °C. Polarizing optical microscopy and wide-angle X-ray diffraction indicated that some ordered regions formed in the particles prepared by modified microemulsion polymerization. The addition of a chain-transfer agent resulted in a decrease in both the syndiotacticity and Tg through decreasing polymer molecular weight. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 733–741, 2004  相似文献   

16.
Photoactive N‐alkoxy 4‐phenyl pyridinium and N‐alkoxy isoquinolinium ion terminated polystyrenes with hexafluoroantimonate counter anion were prepared and characterized. For this purpose, mono‐ and dibrominated polystyrenes were prepared by atom transfer radical polymerization (ATRP). The reaction of these polymers with silver hexafluoroantimonate in the presence of 4‐phenylpyridine N‐oxide and isoquinoline N‐oxide in dichloromethane produced desired polymeric salts with the corresponding functionalities. Irradiation of these photoactive polystyrenes produced alkoxy radicals at chain ends capable of initiating free radical polymerization of methyl methacrylate (MMA). This way, depending on the number of functionality, AB or ABA type block copolymers were formed which were characterized with the aid of gel permeation chromatography and 1H NMR spectroscopy. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 423–428, 2007.  相似文献   

17.
Hybrid linear‐dendritic ABA polymers, where A and B are dendritic and linear polymers, respectively, were synthesized in a single step via step‐growth polymerization of 4,4′‐difluorodiphenylsulfone and bisphenol A using arylether ketone dendrons of first and second generations (G1‐OH and G2‐OH) as monofunctional end‐cappers. These G1 and G2‐terminated poly(ether sulfone)s (G1‐PESs and G2‐PESs) were characterized by 1H NMR, SEC, DSC, TGA, melt rheology, and tensile tests. The comparison of the glass transition temperatures (Tgs) of these polymers with those of t‐butylphenoxy‐terminated polysulfones reveal that the G1‐ and G2‐PESs have lower Tgs at all molecular weights investigated. However, a plot of Tg versus 1/Mn shows that the difference between the three series becomes negligible at infinite molecular weight and agrees to the chain end free volume theory. The melt viscosities of G1‐PES and G2‐PES with high molecular weights do not show a Newtonian region and, in the high frequency region, their viscosities are lower than that of the control while the stress–strain properties are comparable to those of the control, suggesting that it is possible to reduce the high shear melt viscosity of a PES without affecting the stress–strain properties by introducing bulky dendritic terminal groups. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 958–969, 2008  相似文献   

18.
Fluoroalkyl methacrylates, 2,2,2‐trifluoroethyl methacrylate ( 1 ), hexafluoroisopropyl methacrylate ( 2 ), 1,1,1,3,3,3‐hexafluoro‐2‐methyl‐2‐propyl methacrylate ( 3 ), and perfluoro t‐butyl methacrylate ( 4 ) were synthesized. Homopolymers and copolymers of these fluoroalkyl methacrylates with methyl methacrylate (MMA) were prepared and characterized. With the exception of the copolymers of MMA and 2,2,2‐trifluoroethyl methacrylate ( 1 ), the glass transition temperatures (Tgs) of the copolymers were found to deviate positively from the Gordon‐Taylor equation. The positive deviation from the Gordon‐Taylor equation could be accounted for by the dipole–dipole intrachain interaction between the methyl ester group and the fluoroalkyl ester group of the monomer units. These Tg values of the copolymers were found to fit with the Schneider equation. The fitting parameters in the Schneider equation were calculated, and R2 values, the coefficients of determination, were almost 1.0. The refractive indices of the copolymers, measured at 532, 633, and 839 nm wavelengths, were lower than that of PMMA and showed a linear relationship with monomer composition in the copolymers. 2 and MMA have a tendency to polymerize in an alternating uniform monomer composition, resulting in less light scattering. This result suggests that the copolymer prepared with an equal molar ratio of 2 and MMA may have useful properties with applications in optical devices. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4748–4755, 2008  相似文献   

19.
Doubly functionalized polar norbornenes 3a – 3g substituted by both a variety of ester and cyano groups were polymerized by ring‐opening metathesis polymerization (ROMP) with a Ru carbene complex 2 bearing 3‐bromopyridine as a ligand (third generation Grubbs' catalyst) in a living manner. The successive hydrogenation of the main‐chain double bond in the synthesized living ROMP polymers 4a – 4g with a hydridoruthenium complex was exploited. The comparison of thermal properties of a series of ring‐opening metathesis polymers 4a – 4g with those of their hydrogenated derivatives 5a – 5g revealed the decrease of glass transition temperatures (Tg) but little change of the 5% decomposition temperature (Td5). In all cases examined in this study, a decrease of Tg by hydrogenation was around 20–40 °C, regardless of the ester substitutents. In the presence of the additional PCy3, triethylamine, and methanol after complete consumption of monomer 3a under the living ROMP condition, the tandem ROMP‐hydrogenation of the resulting polymer 4a generated in situ was attained under a H2 (9.8 MPa) atmosphere at 80 °C to afford the hydrogenated polymer 5a , retaining the narrow polydispersity of 1.03. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3314–3325 2008  相似文献   

20.
3-(4-Aminophenyl)-5-(3-aminophenyl)-2-pyrazoline as well as the 1-acetyl- or 1-benzoyl-substituted derivatives of this compound were synthesized and used for preparing a new series of polyamides and polyimides. Characterization of polymers was accomplished by inherent viscosity, 1H-NMR, 13C-NMR, x-ray, DTA, TMA, TGA, and isothermal gravimetric analysis. The properties of polymers were correlated with their chemical structures. They were amorphous or microcrystalline and soluble in polar aprotic solvents, CCl3COOH, and m-cresol. The polyamides showed an excellent solubility being soluble even in o-dichlorobenzene, 1,2-dichloroethane, and chloroform. The polymers displayed Tg at 127–163°C and softening at 150–195°C. The polyamide bearing unsubstituted pyrazoline moieties was remarkably more hydrophilic than those containing 1-acetyl- or 1-benzoyl-substituted pyrazoline segments. Upon curing, crosslinked polymers were obtained and their thermal stability was evaluated. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 1353–1361, 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号