首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Atactic polystyrene of M = 330,000 Da and Mw/Mn = 1.04 was subjected to a complete chloromethylation. By heating the chloromethyl polystyrene with SnCl4 in a very dilute solution in ethylene dichloride, the polymeric coils were converted into intramolecularly hypercrosslinked macromolecules, called “nanosponges.” These species have a molecular weight of about 370,000 Da and a diameter of about 17 nm. When in solution, the nanosponges display a tendency to reversibly self‐assemble into regular clusters. Preparative size‐exclusion chromatography isolates a fraction consisting predominantly of spherical clusters that are composed of 13 subunits and acquire a molecular weight of approximately 5.0 × 106 Da and a diameter of 45 nm. Scanning atomic force microscopy (AFM) provides images of individual nanosponges, N = 13 clusters, as well as higher spherical clusters. The regular spherical species most probably belong to the cluster series N = 1 + ∑(10n2 + 2), where n is the number of shells around the central nanosponge. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1451–1455, 1999  相似文献   

2.
Cellulose was dissolved in 6 wt % NaOH/4 wt % urea aqueous solution, which was proven by a 13C NMR spectrum to be a direct solvent of cellulose rather than a derivative aqueous solution system. Dilute solution behavior of cellulose in a NaOH/urea aqueous solution system was examined by laser light scattering and viscometry. The Mark–Houwink equation for cellulose in 6 wt % NaOH/4 wt % urea aqueous solution at 25 °C was [η] = 2.45 × 10?2 weight‐average molecular weight (Mw)0.815 (mL g?1) in the Mw region from 3.2 × 104 to 12.9 × 104. The persistence length (q), molar mass per unit contour length (ML), and characteristic ratio (C) of cellulose in the dilute solution were 6.0 nm, 350 nm?1, and 20.9, respectively, which agreed with the Yamakawa–Fujii theory of the wormlike chain. The results indicated that the cellulose molecules exist as semiflexible chains in the aqueous solution and were more extended than in cadoxen. This work provided a novel, simple, and nonpollution solvent system that can be used to investigate the dilute solution properties and molecular weight of cellulose. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 347–353, 2004  相似文献   

3.
We report viscometric data collected in a Couette rheometry on dilute, single‐solvent polystyrene (PS)/dioctyl phthalate (DOP) solutions over a variety of polymer molecular weights (5.5 × 105Mw ≤ 3.0 × 106 Da) and system temperatures (288 K ≤ T ≤ 318 K). In view of the essential viscometric features, the current data may be classified into three categories: The first concerns all the investigated solutions at low shear rates, where the solution properties are found to agree excellently with the Zimm model predictions. The second includes all sample solutions, except for high‐molecular‐weight PS samples (Mw ≥ 2.0 × 106 Da), where excellent time–temperature superposition is observed for the steady‐state polymer viscosity at constant polymer molecular weights. No similar superposition applies at a constant temperature but varied polymer molecular weights, however. The third appears to be characteristic of dilute high‐molecular‐weight polymer solutions, for which the effects of temperature on the viscosity curve are further complicated at high shear rates. The implications concerning the relative importance of hydrodynamic interactions, segmental interactions, and chain extensibility with increasing polymer molecular weight, system temperature, and shear rate are discussed. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 787–794, 2006  相似文献   

4.
The design and synthesis of well‐defined polymethylene‐b‐polystyrene (PM‐b‐PS, Mn = 1.3 × 104–3.0 × 104 g/mol; Mw/Mn (GPC) = 1.08–1.18) diblock copolymers by the combination of living polymerization of ylides and atom transfer radical polymerization (ATRP) was successfully achieved. The 1H NMR spectrum and GPC traces of PM‐b‐PS indicated the successful extension of PS segment on the PM macroinitiator. The micellization behavior of such diblock copolymers in tetrahydrofuran were characterized by dynamic light scattering (DLS) and atomic force microscopy (AFM) techniques. The average aggregate sizes of PM‐b‐PS diblock copolymers with the same length of PM segment in tetrahydrofuran solution (1.0 mg mL?1) increases from 104.2 nm to 167.7 nm when the molecular weight of PS segment increases. The spherical precipitated aggregates of PM‐b‐PS diblock copolymers with an average diameter of 600 nm were observed by AFM. Honeycomb porous films with the average diameter of 3.0 μm and 6.0 μm, respectively, were successfully fabricated using the solution of PM‐b‐PS diblock copolymers in carbon disulfide via the breath‐figure (BF) method under a static humid condition. The cross‐sections of low density polyethylene (LDPE)/polystyrene (PS)/PM‐b‐PS and LDPE/polycarbonate (PC)/PM‐b‐PS blends were observed by scanning electron microscope and reveal that the PM‐b‐PS diblock copolymers are effective compatilizers for LDPE/PS and LDPE/PC blends. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1894–1900, 2010  相似文献   

5.
Amphiphilic AB‐type diblock copolymers composed of hydrophobic poly(L ‐lactide) (PLA) segments and hydrophilic poly(glycolic acid lysine) [poly(Glc‐Lys)] segments with amino side‐chain groups self‐associated to form PLA‐based polymeric micelles with amino surfaces in an aqueous solution. The average diameter of the loose core–shell polymeric micelles for poly(Glc‐Lys) [number‐average molecular weight (Mn) = 1240]‐b‐PLA (Mn = 7000) obtained by a dimethyl sulfoxide/water dialysis method was estimated to be about 50 nm in water by dynamic light scattering measurements. The size and shape of the obtained polymeric micelles were further observed with transmission electron microscopy and atomic force microscopy. To investigate the possibility of applying the obtained PLA‐based polymeric micelles as bioabsorbable vehicles for hydrophobic drugs, we tested the entrapment of drugs in poly(Glc‐Lys) (Mn = 1240)‐b‐PLA (Mn = 7000) micelles and their release with doxorubicin as a hydrophobic drug. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1426–1432, 2002  相似文献   

6.
This study deals with control of the molecular weight and molecular weight distribution of poly(vinyl acetate) by iodine‐transfer radical polymerization and reversible addition‐fragmentation transfer (RAFT) emulsion polymerizations as the first example. Emulsion polymerization using ethyl iodoacetate as the chain transfer agent more closely approximated the theoretical molecular weights than did the free radical polymerization. Although 1H NMR spectra indicated that the peaks of α‐ and ω‐terminal groups were observed, the molecular weight distributions show a relatively broad range (Mw/Mn = 2.2–4.0). On the other hand, RAFT polymerizations revealed that the dithiocarbamate 7 is an excellent candidate to control the polymer molecular weight (Mn = 9.1 × 103, Mw/Mn = 1.48), more so than xanthate 1 (Mn = 10.0 × 103, Mw/Mn = 1.89) under same condition, with accompanied stable emulsions produced. In the Mn versus conversion plot, Mn increased linearly as a function of conversion. We also performed seed‐emulsion polymerization using poly(nonamethylene L ‐tartrate) as the chiral polyester seed to fabricate emulsions with core‐shell structures. The control of polymer molecular weight and emulsion stability, as well as stereoregularity, is also discussed. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

7.
A doubly hydrophilic triblock copolymer of poly(N,N‐dimethylamino‐2‐ethyl methacrylate)‐b‐Poly(ethylene glycol)‐b‐poly(N,N‐dimethylamino‐2‐ethylmethacrylate) (PDMAEMA‐b‐PEG‐b‐PDMAEMA) with well‐defined structure and narrow molecular weight distribution (Mw/Mn = 1.21) was synthesized in aqueous medium via atom transfer radical polymerization (ATRP) of N,N‐dimethylamino‐2‐ethylmethacrylate (DMAEMA) initiated by the PEG macroinitiator. The macroinitiator and triblock copolymer were characterized with 1H NMR and gel permeation chromatography (GPC). Fluorescence spectroscopy, dynamic light scattering (DSL), transmittance measurement, and rheological characterization were applied to investigate pH‐ and temperature‐induced micellization in the dilute solution of 1 mg/mL when pH > 13 and gelation in the concentrated solution of 25 wt % at pH = 14 and temperatures beyond 80 °C. The unimer of Rh = 3.7 ± 0.8 nm coexisted with micelle of Rh = 45.6 ± 6.5 nm at pH 14. Phase separation occurred in dilute aqueous solution of the triblock copolymer of 1 mg/mL at about 50 °C. Large aggregates with Rh = 300–450 nm were formed after phase separation, which became even larger as Rh = 750–1000 nm with increasing temperature. The gelation temperature determined by rheology measurement was about 80 °C at pH 14 for the 25 wt % aqueous solution of the triblock copolymer. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5869–5878, 2008  相似文献   

8.
Cellulose was dissolved rapidly in 4.6 wt % LiOH/15 wt % urea aqueous solution and precooled to –10 °C to create a colorless transparent solution. 13C‐NMR spectrum proved that it is a direct solvent for cellulose rather than a derivative aqueous solution system. The result from transmission electron microscope showed a good dispersion of the cellulose molecules in the dilute solution at molecular level. Weight‐average molecular weight (Mw), root mean square radius of gyration (〈s2z1/2), and intrinsic viscosity ([η]) of cellulose in LiOH/urea aqueous solution were examined with laser light scattering and viscometry. The Mark–Houwink equation for cellulose in 4.6 wt % LiOH/15 wt % urea aqueous solution was established to be [η] = 3.72 × 10?2 M in the Mw region from 2.7 × 104 to 4.12 × 105. The persistence length (q), molar mass per unit contour length (ML), and characteristic ratio (C) of cellulose in the dilute solution were given as 6.1 nm, 358 nm?1, and 20.8, respectively. The experimental data of the molecular parameters of cellulose agreed with the Yamakawa–Fujii theory of the worm‐like chain, indicating that the LiOH/urea aqueous solution was a desirable solvent system of cellulose. The results revealed that the cellulose exists as semistiff‐chains in the LiOH/urea aqueous solution. The cellulose solution was stable during measurement and storage stage. This work provided a new colorless, easy‐to‐prepare, and nontoxic solvent system that can be used with facilities to investigate the chain conformation and molecular weight of cellulose. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3093–3101, 2006  相似文献   

9.
Rigid‐rod poly(4′‐methyl‐2,5‐benzophenone) macromonomers were synthesized by Ni(0) catalytic coupling of 2,5‐dichloro‐4′‐methylbenzophenone and end‐capping agent 4‐chloro‐4′‐fluorobenzophenone. The macromonomers produced were labile to nucleophilic aromatic substitution. The molecular weight of poly(4′‐methyl‐2,5‐benzophenone) was controlled by varying the amount of the end‐capping agent in the reaction mixture. Glass‐transition temperatures of the macromonomers increased with increasing molecular weight and ranged from 117 to 213 °C. Substitution of the macromonomer end groups was determined to be nearly quantitative by 1H NMR and gel permeation chromatography. The polymerization of a poly(4′‐methyl‐2,5‐benzophenone) macromonomer [number‐average molecular weight (Mn) = 1.90 × 103 g/mol; polydispersity (Mw)/Mn = 2.04] with hydroxy end‐capped bisphenol A polyaryletherketone (Mn = 4.50 × 103 g/mol; Mw/Mn = 1.92) afforded an alternating multiblock copolymer (Mn = 1.95 × 104 g/mol; Mw/Mn = 6.02) that formed flexible, transparent films that could be creased without cracking. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3505–3512, 2001  相似文献   

10.
A cylindrical molecular brush with a low graft density was synthesized by two steps. Firstly, free radical alternating copolymerization of styrene (St) and N‐[2‐(2‐bromoisobutyryloxy)ethyl] maleimide (BiBEMI) gave a macroinitiator where pendant initiating sites for atom transfer radical polymerization (ATRP) being positioned along the backbone with an interval of four C? C bonds. The backbone‐to‐be with an alternating sequence was verified by elemental analysis (EA). Secondly, grafting poly(tert‐butyl acrylate) chains from the macroinitiator by ATRP produced the novel molecular brush. Size exclusion chromatography, static light scattering (SLS), and 1H NMR and atomic force microscopy (AFM) were used to characterize the macroinitiator and the molecular brush. The results show that the backbone contains an average 730 repeat units (1 repeat unit = a pair of St and BiBEMI) and the absolute molecular weight of the brush, Mw,SLS, was 4.88 × 106 Da. The brush reveals a number average length Ln to be 96 nm under AFM observation on carbon coated mica, corresponding to the length per main chain monomer unit (Lunit) of 0.066 nm, indicating a less extended conformation due to the low grafting density. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5527–5533, 2009  相似文献   

11.
Styrene oxide (SO) was polymerized with a diethylzinc/α-pinene oxide (ZnEt2/α-PiO) catalyst system under various conditions. Polystyrene oxide (PSO) thus obtained had a regular head-to-tail and isotactic structure. The number-average molecular weight reached 4.07 × 104, and the molecular weight distribution was 5.7 (Mw/Mn). The glass-transition temperature of PSO was about 47 to 50 °C, depending on the molecular weight. The molar ratio of ZnEt2 to α-PiO, 2 : 1, led to a high molecular weight of PSO in an 89.2% yield within 72 h. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 4640–4645, 1999  相似文献   

12.
The composition and properties of the surface layers of poly(styrene/α-t-butoxy-ω-polyglycidol) [poly(styrene/VB-polyGL)] microspheres synthesized by the radical copolymerization of styrene and α-t-butoxy-ω-vinylbenzyl-polyglycidol (VB-polyGL) macromonomers [number-average molecular weight (Mn) = 950 or 2700] were investigated with X-ray photoelectron spectroscopy, 13C NMR, and the adsorption of human serum albumin and γ-globulins. The number-average diameter of the synthesized microspheres was 220 nm. Their surface layers were rich in polyglycidol, with polyglycidol-to-polystyrene unit ratios of 0.443 (VB-polyGL with Mn = 950) and 0.427 (VB-polyGL with Mn = 2700). In suspensions of poly(styrene/VB-polyGL) particles in D2O, the polymer chains in the polyglycidol-rich surface layers were highly mobile, allowing the registration of polyglycidol 13C NMR spectra with standard procedures for polymer solutions. In these spectra, the signals of the relatively immobile polystyrene segments were absent. The spin–lattice relaxation times (T1) measured for polyglycidol in the microsphere surface layers and for VB-polyGL macromonomers in solution were very close, indicating similar degrees of motion in bound (in particle surface layers) and free (in solution) polyglycidol macromolecules. Studies of protein adsorption revealed that hydrophilic polyglycidol layers were protein-repellent. It was found that longer polyglycidol chains in particle surface layers were more mobile (higher T1 values) and provided better protection against protein adsorption. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 615–623, 2004  相似文献   

13.
Well‐defined polyacrylonitrile (PAN) of high viscosity‐average molecular weight (Mη = 405,100 g/mol) was successfully synthesized using reversible addition‐fragmentation chain transfer polymerization. The polymerization exhibits controlled characters: molecular weights of the resultant PANs increasing approximately linearly with monomer conversion and keeping narrow molecular weight distributions. The addition of 0.01 equiv (relative to monomer acrylonitrile) of Lewis acid AlCl3 in the polymerization system afforded the obtained PAN with an improved isotacticity (by 8%). In addition, the influence of molecular weights and molecular weight distributions of PANs on the morphology of the electrospun fibers was investigated. The results showed that, under the same conditions of electrospinning, average diameter (247–1094 nm) of fibers increased with molecular weights of PANs, and it was much easier to get “uniform” diameter fibers while using PANs with narrow molecular weight distributions as the precursor of electrospinning. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

14.
A series of new functional poly(ethylene‐co‐vinyl alcohol)‐g‐polystyrene graft copolymers (EVAL‐g‐PS) with controlled molecular weight (Mn = 38,000–94,000 g mol?1) and molecular weight distribution (Mw/Mn = 2.31–3.49) were synthesized via a grafting from methodology. The molecular structure and component of EVAL‐g‐PS graft copolymers were confirmed by the analysis of their 1H NMR spectra and GPC curves. The porous films of such copolymers were fabricated via a static breath‐figure (BF) process. The influencing factors on the morphology of such porous films, such as solvent, temperature, polymer concentration, and molecular weight of polymer were investigated. Ordered porous film and better regularity was fabricated through a static BF process using EVAL‐g‐PS solution in CHCl3. Scanning electron microscopy observation reveals that the EVAL‐g‐PS graft copolymer is an efficient compatibilizer for the blend system of low‐density polyethylene/polystyrene. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 516–524  相似文献   

15.
A novel segmented block copolymer, containing polyethylene glycol segment and GlyAlaGlyAla sequence derived from B. mori silk, has been prepared as a model for silk‐based materials using both solution and interfacial techniques. Inherent viscosity, size exclusion chromatography, and light‐scattering measurements gave molecular weight between Mw 34,000–39,000. Evidence for phase separation was provided by differential scanning calorimetry, which gave two Tg's at −57 °C and 111 °C, and transmission electron microscopy, which showed a morphology in which the peptide domain, estimated to be about 20–50 nm, was dispersed in the continuous polyether phase. Solid‐state FTIR spectroscopic results showed that the polymer contained both parallel and antiparallel β‐sheet stacks, and that the solution‐polymerized material has the higher β‐sheet content. This was further confirmed by 13C NMR, which gave about 80% total β‐sheet content for the solution‐polymerized product and about 40% for the polymer obtained by interfacial polymerization. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 352–366, 2000  相似文献   

16.
Based on the dibenzo‐24‐crown‐8/1,2‐bis(pyridinium)ethane recognition motif, a hyperbranched mechanically interlocked polymer was prepared by polyesterification of an easily available dynamic trifunctional AB2 pseudorotaxane monomer. It was characterized by various techniques including 1H NMR, COSY, NOESY, GPC, viscosity, TGA, dynamic laser light scattering, AFM, and SEM. Its GPC Mn was determined to be 191 kDa with polydispersity 1.7 and its hydrodynamic diameter in a dilute solution in acetone was about 70 nm. This measured Mn value corresponds to about 93 repeating units. The study reported here presents not only a new polymer topology but also a novel and convenient way to prepare mechanically interlocked polymers. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 4067–4073, 2010  相似文献   

17.
A series of four well‐defined poly(ferrocenyldimethylsilane) (PFS) samples spanning a molecular weight range of approximately 10,000–100,000 g mol−1 was synthesized by the living anionic polymerization of dimethyl[1]silaferrocenophane initiated with n‐BuLi. The polymers possessed narrow polydispersities and were used to characterize the solution behavior of PFS in tetrahydrofuran (THF). The weight‐average molecular weights (Mw ) of the polymers were determined by low‐angle laser light scattering (LALLS), conventional gel permeation chromatography (GPC), and GPC equipped with a triple detector (refractive index, light scattering, and viscosity). The molecular weight calculated by conventional GPC, with polystyrene standards, underestimated the true value in comparison with LALLS and GPC with the triple detection system. The Mark–Houwink parameter a for PFS in THF was 0.62 (k = 2.5 × 10−4), which is indicative of fairly marginal polymer–solvent interactions. The scaling exponent between the radius of gyration and Mw was 0.54, also consistent with marginal polymer–solvent interactions for PFS in THF. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 3032–3041, 2000  相似文献   

18.
The effect of molecular weight of poly(ε‐caprolactone) (PCL) on the formation and stability of inclusion complexes (ICs) between α‐cyclodextrin (α‐CD) and PCL was investigated by FTIR, WAXD, and DSC measurements. ICs between α‐CD and PCLs with a wide range of number‐average molecular weight, Mn = 1.21 × 104 – 1.79 × 105, were prepared by mixing the aqueous solution of CD and acetone solution of PCL followed by stirring at 60 °C for 1h and at the room temperature for 1 day. FTIR, WAXD, and DSC measurement showed the PCL chains were included into the α‐CD cavity, and the crystallization of PCL was suppressed in the α‐CD cavity. Stoichiometry and yield of each IC varied with the molecular weight of guest PCL, and the effect of IC formation on the crystallization behaviour of guest polymer decreased with the increase of molecular weight of guest polymer. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1433–1440, 2005  相似文献   

19.
The ring‐opening polymerization of ε‐caprolactone (ε‐CL), initiated by carboxylic acids such as benzoic acid and chlorinated acetic acids under microwave irradiation, was investigated; with this method, no metal catalyst was necessary. The product was characterized as poly(ε‐caprolactone) (PCL) by 1H NMR spectroscopy, Fourier transform infrared spectroscopy, ultraviolet spectroscopy, and gel permeation chromatography. The polymerization was significantly improved under microwave irradiation. The weight‐average molecular weight (Mw) of PCL reached 44,800 g/mol, with a polydispersity index [weight‐average molecular weight/number‐average molecular weight (Mw/Mn)] of 1.6, when a mixture of ε‐CL and benzoic acid (25/1 molar ratio) was irradiated at 680 W for 240 min, whereas PCL with Mw = 12,100 and Mw/Mn = 4.2 was obtained from the same mixture by a conventional heating method at 210 °C for 240 min. A degradation of the resultant PCL was observed during microwave polymerization with chlorinated acetic acids as initiators, and this induced a decrease in Mw of PCL. However, the degradation was hindered by benzoic acid at low concentrations. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 13–21, 2003  相似文献   

20.
The aggregation of Erwinia (E) gum in a 0.2 M NaCl aqueous solution was investigated by multi‐angle laser light scattering and gel permeation chromatography (GPC) combined with light scattering. The GPC chromatograms of five fractions contained two peaks; the fractions had the same elution volume but different peak areas, suggesting that aggregates and single chains coexisted in the solution at 25 °C. The apparent weight‐average molecular weights (Mw) of the aggregates and single chains for each fraction were all about 2.1 × 106 and 7.8 × 104, respectively. This indicates that the aggregates were composed of about 27 molecules of E gum in the concentration range used (1.0 × 10−6 to 5.0 × 10−4 g/mL). The weight fraction of the aggregates (wag) increased with increasing concentration, but the aggregates still existed even in an extremely dilute solution. The fractionation process and polymer concentration hardly affected the apparent aggregation number but significantly changed wag. The E‐gum Mw decreased sharply with an increase in temperature. When the E‐gum solution was kept at 100 °C, wag decreased sharply for 20 h and leveled off after 100 h. Once the aggregates were decomposed at a higher temperature, no aggregation was observed in the solution at 25 °C, indicating that the aggregation was irreversible. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1352–1358, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号