首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For polyimide thin films, the dielectric properties were investigated with the capacitance and optical methods. The dielectric constants of the 4,4′‐oxydianiline (ODA)‐based polyimide thin films varied from 2.49 to 3.10 and were in the following decreasing order: 3,3′,4,4′‐biphenyltetracarboxylic dianhydride (BPDA)–ODA > 1,2,4,5‐benzenetetracarboxylic dianhydride (PMDA)–ODA > 4,4′‐hexafluoroisopropylidene diphthalic dianhydride (6FDA)–ODA. According to the absorption of water, the diffusion coefficients in the films varied from 4.8 × 10?10 to 7.2 × 10?10 cm2/s and were in the following increasing order: BPDA–ODA < PMDA–ODA < 6FDA–ODA. The dielectric constants and diffusion coefficients of the polyimides were affected by the morphological structures, including the molecular packing order. However, because of the water uptake, the changes in the dielectric constants in the polyimide thin films varied from 0.49 to 1.01 and were in the following increasing order: BPDA–ODA < 6FDA–ODA < PMDA–ODA. Surprisingly, 6FDA–ODA with bulky hexafluoroisopropylidene groups showed less of a change in its dielectric constant than PMDA–ODA. The total water uptake for the polyimide thin films varied from 1.43 to 3.19 wt % and was in the following increasing order: BPDA–ODA < 6FDA–ODA < PMDA–ODA. This means that the changes in the dielectric constants in the polyimide thin films were significantly related to the morphological structure and hydrophobicity of hexafluoroisopropylidene groups. Therefore, the morphological structure and chemical affinity in the polyimide thin films were important factors in controlling the dielectric properties. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2190–2198, 2002  相似文献   

2.
Polyimide/polyimide molecular composite (MC) films comprised of a rigid polyimide derived from biphenyltetracarboxylic dianhydride (BPDA) and p-phenylenediamine (PDA) and a flexible polyimide derived from BPDA and bis (3,3'-diaminodiphenyl) acetylene (intA) and/or oxydianiline (ODA) were prepared by blending the polyamic acid solutions in 7 : 3 weight ratio, and then imidizing the blend films. Acetylene content in the flexible polyimide backbone was controlled by the ratio of intA and ODA. Cold-drawing of the blend polyamic acid films, followed by imidization, gives high modulus polyimide/polyimide MC films. The modulus of the MC films increased almost linearly with the draw ratio, reaching 25.5 GPa for the 40% drawn film. Acetylene groups in the flexible polyimide can be thermally cured to crosslink. The onset of exotherm appeared at 340°C on DSC, reaching maximum at 398°C. After the thermal crosslinking, the MC films maintained the high modulus, though elongation became small. Taking advantage of the crosslinkable acetylene units, two MC films were laminated and processed at 400°C for 20 min under 100 kg/cm2 to give a good-quality laminate film. The interface of the two films was strongly bonded through the crosslinking of acetylene groups. Laminate films maintained the high modulus afforded by the cold-drawing. © 1994 John Wiley & Sons, Inc.  相似文献   

3.
Crosslinking behavior of internal acetylene units linked para to the aromatic rings was investigated by preparing polyimide from 4,4′-diaminodiphenylacetylene (p-intA) and 2,2′-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride (6FDA). Polyimide was also prepared from 1,4-phenylenediamine (PDA) and 6FDA for comparison. The polymers were moderately to highly viscous at the stage of polyamide acid. Thermal imidization gave polyimide having acetylene units that are linked para to the aromatic connecting units. Differential scanning calorimetry (DSC) measurement of the polymer revealed that exotherm due to the crosslinking of the acetylene unit appeared at ca. 330°C. After thermal treatment at high temperature such as 350 and 400°C, onset of the exotherm shifted to higher temperature and the amount of the exotherm became smaller. The dynamic mechanical properties of the uncrosslinked polyimide film treated at 250°C had a glass transition temperature (Tg) at 330°C with a considerable drop in the storage modulus at this temperature. After the film was exposed to a higher temperature to induce crosslinking, the Tg was observed to increase to above 400°C and the storage modulus was maintained to higher temperatures. Tensile properties of the polyimide showed that the films had good mechanical properties. © 1996 John Wiley & Sons, Inc.  相似文献   

4.
In this work, polyimide/silica hybrid composites were prepared by the sol-gel reaction of tetraethoxysilane(TEOS) and the thermal imidization of poly(amic acid) from 3,3′,4,4′-biphenyltetracarboxylic dianhydride(BPDA) and 4,4′-oxydianiline(ODA), and their photophysical properties were investigated using a fluorescence spectroscopy. It was found that the intrinsic fluorescence of poly(4,4′-oxydiphenylene-3,3′4,4′-biphenyltetracarboximide)(BPDA-ODA) such as emission intensity and emission wavelength depends strongly on the changes in the molecular conformations during the sol-gel reaction and the thermal imidization. In conclusion, we found that the fluorescence spectroscopy can provide an insight into how the intermolecular or intramolecular interaction of polyimide in the hybrid composite system is affected by the silica contents, depending on the sample states.  相似文献   

5.
Novel aromatic polyimides containing bis(phenoxy)naphthalene units were synthesized from 1,5-bis(4-aminophenoxy)naphthalene (APN) and various aromatic tetracarboxylic dianhydrides by the usual two-step procedure that included ring-opening polyaddition in a polar solvent such as N,N-dimethylacetamide (DMAc) to give poly(amic acid)s, followed by cyclodehydration to polyimides. The poly(amic acid)s had inherent viscosities between 0.72 and 1.94 dL/g, depending on the tetracarboxylic dianhydrides used. Excepting the polyimide IVb obtained from 3,3′,4,4′-biphenyltetracarboxylic dianhydride (BPDA), all other polyimides formed brown, flexible, and tough films by casting from the poly(amic acid) solutions. The polyimide synthesized from BPDA was characterized as semicrystalline, whereas the other polyimides showed amorphous patterns as shown by the x-ray diffraction studies. Tensile strength, initial moduli, and elongation at break of the APN-based polyimide films ranged from 105–135 MPa, 1.92–2.50 GPa, and 6–7%, respectively. These polyimides had glass transition temperatures between 228 and 317°C. Thermal analyses indicated that these polymers were fairly stable, and the 10% weight loss temperatures by TGA were recorded in the range of 543–574°C in nitrogen and 540–566°C in air atmosphere, respectively. © 1993 John Wiley & Sons, Inc.  相似文献   

6.
Partly imidized polyamic acid(PAA) has been used to prepare high performance polyimide films. The behaviors of two polyamic acids derived from pyromellitic dianhydride(PMDA)/4,4′-oxydianiline(ODA) and 3,3′,4,4′-biphenyltetracarboxylic diahhydride(BPDA)/paraphenylenediamine(PPD) containing dehydrating agents composed of acetic anhydride and a tertiary amine as the catalyst were investigated. The gel point was dependent on imidization degree in despite of temperature and the molar ratio of catalyst to acetic acid. Imdization content was about 35% for PMDA/ODA and about 22% for BPDA/PPD. The effect of catalyst on imidization possessed an order of triethylamine>3-methylpyridine>pyridine>isoquinoline>2-methylpyridine. The stretching of the films greatly reduced the coefficient of linear thermal expansion(CTE) either in the longitudinal direction or transversal direction. Compared to the film from polyamic acid, the partly imidized film had greater stretching ratio, so that the uniaxial stretched polyimide film from partly imidized PAA had higher tensile strength and tensile modulus, but lower elongation in the stretching direction.  相似文献   

7.
Para-, meta-, and mixed isomeric poly(amic ethyl ester) precursors of the polyimide based on pyromellitic dianhydride (PMDA) and 3,4′-oxydianiline (3,4′-ODA) were synthesized. The intrinsic viscosity of each of the isomers was measured in an NMP solution and found to be less than corresponding isomers derived from PMDA and 4,4′-oxydianiline (4,4′-ODA) precursors with comparable molecular weight. The imidization and solvent retention were measured as a function of imidization temperatures, Ti using forward recoil spectrometry (FRES). For samples cast from a single solvent, either N-methyl pyrrolidone (NMP) or dimethyl sulfoxide (DMSO), no difference was observed in the temperature-dependent imidization behavior between the isomers. In all cases the imide fraction f increased as Ti increased, and reached a value of unity, i.e., full conversion at 400°C. At the same Ti, samples cast from DMSO showed a slightly higher f than samples cast from NMP. FRES and time of flight FRES (TOF-FRES) were used to measure the interdiffusion distance, w, of deuterium-labeled tracers into nondeuterated base layers of the polyimide of PMDA/3,4′-ODA treated at various Ti. The primary determinant of w for all isomers was Ti, and the particular isomer used as either the base or the tracer molecule did not seem to affect w. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 2247–2258, 1998  相似文献   

8.
1,1‐Bis[4‐(4‐aminophenoxy)phenyl]‐1‐phenylethane (BAPPE) was prepared through nucleophilic substitution reaction of 1,1‐bis(4‐hydroxyphenyl)‐1‐phenylethane and p‐chloronitrobenzene in the presence of K2CO3 in N,N‐dimethylformamide, followed by catalytic reduction with hydrazine and Pd/C. Novel organosoluble polyimides and copolyimides were synthesized from BAPPE and six kinds of commercial dianhydrides, including pyromellitic dianhydride (PMDA, Ia ), 3,3′,4,4′‐benzophenonetetracarboxylic dianhydride (BTDA, Ib ), 3,3′,4,4′‐ biphenyltetracarboxylic dianhydride (BPDA, Ic ), 4,4′‐oxydiphthalic anhydride (ODPA, Id ), 3,3′,4,4′‐diphenylsulfonetetracarboxylic dianhydride (DSDA, Ie ) and 4,4′‐hexafluoroisopropylidenediphthalic anhydride (6FDA, If ). Differing with the conventional polyimide process by thermal cyclodehydration of poly(amic acid), when polyimides were prepared by chemical cyclodehydration with N‐methyl‐2‐pyrrolidone as used solvent, resulted polymers showed good solubility. Additional, Ia,b were mixed respectively with the rest of dianhydrides (Ic–f) and BAPPE at certain molar ratios to prepare copolyimides with arbitrary solubilities. These polyimides and copolyimides were characterized by good mechanical properties together with good thermal stability. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2082–2090, 2000  相似文献   

9.
Conventional synthesis of polyimides includes high‐temperature (160–350 °C) imidization of poly(amic acid)s. In the present work, imidization has been carried out at much lower temperatures (40–160 °C). 1,2,4,5,‐cyclohexanetetracarboxylic dianhydride (HPMDA) or pyromellitic dianhydride (PMDA) was polymerized with an aromatic diamine, 4,4′‐diaminodiphenylmethane (DDPM), to give poly(amic acid)s, which were then imidized chemically. Imidization was more than 90% complete even at the very low imidization temperature of 40 °C. It was found that the imidization occurs in two steps: an initial rapid cyclization and a subsequent slower cyclization. The activation energy for the rapid process was determined to be 4.3 kJ/mol, and that of the slower process, 4.8 kJ/mol. As the imidization temperature decreases, the transmittance of the resulting polyimides tends to gradually increase, the cutoff wavelength decreases and the color becomes pale. A partially aliphatic polyimide based on HPMDA and DDPM prepared at 40 °C yielded thin films that were highly transparent and colorless, and had good flexibility, solubility and thermal stability. The polyimide films prepared in this study may be good candidates for flexible, transparent plastic substrates in the display industry. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1593–1602  相似文献   

10.
This article describes the synthesis and thermal characterization of novel aryl-substituted rod-like homopolyimides. Synthetic aspects of monomer syntheses and one-step polymer synthesis in m-cresol are presented. Polyimides with rod-like chain structure are based on monophenylated pyromellitic dianhydride (MPPMDA), diphenylated pyromellitic dianhydride (DPPMDA), and as rod-like diamine units on phenylated para-phenylene diamine and 1,1′-binaphthyl-4,4′-diamine. As partial flexible units, which have the possibility to be converted into an extended chain conformation, commercially available 3,3′,4,4′-biphenyltetracarboxylic dianhydride (BPDA) and 3,4′-oxydianiline (3,4′-ODA) were used. The polyimides were investigated with respect to solution properties and thermal behavior. © 1993 John Wiley & Sons, Inc.  相似文献   

11.
A polyimide made from 4,4′-diaminodiphenyl ether (ODA) and 3,3′,4,4′-biphenyltetracarboxylic dianhydride (BPDA) was synthesized in polyphosphoric acid. Although the polymerization proceeded heterogeneously, a polyimide with an inherent viscosity of 0.90 was obtained, and a tough and flexible film was made from this polyimide. This polymerization was a one-step reaction including polycondensation and imidization; this was also confirmed by a model reaction between aniline and phthalic anhydride. Utilizing this polymerization method, 3,3′-dihydroxy-4,4′-diaminobiphenyl and 2 mol of 4-aminobenzoic acid were reacted in PPA, then BPDA was reacted to obtain an alternate copolymer containing imide and oxazole rings. This reaction gave a homogeneous solution of the poly(imide-benzoxazole). © 1993 John Wiley & Sons, Inc.  相似文献   

12.
Aromatic polyesters connected by methylene groups were synthesized. Two pairs of aromatic diacid chlorides, 3,3′-methylenedibenzoyl chloride and 4,4′-methylenedibenzoyl chloride were each polymerized via interfacial polycondensation with 2,2-bis(4-hydroxyphenyl)propane (bisphenol A), 3,3′-methylenediphenol, and 4,4′-methylenediphenol. For comparison, 3,3′-carbonyldibenzoyl chloride and 4,4′-carbonyldibenzoyl chloride were similarly polymerized with bisphenol A. Substitution of meta,meta' oriented phenylene groups for para,para' oriented phenylene groups had a significant and cumulative effect in reducing the glass transition temperatures of the polymers, thereby enhancing their processability. In air the methylene groups of the polyesters undergo oxidation and crosslinking at elevated temperatures. Electron beam irradiation of thin films of the methylene-linked polyesters at room temperature resulted in some chain extension and crosslinking, as evidenced by increased solution viscosity and gel formation. Irradiation at a temperature near or above the glass transition temperatures of the polymers greatly enhanced the tendency for the polymers to crosslink.  相似文献   

13.
Poly(amic acid)s (PAAs) having the high solution stability and transmittance at 365 nm for photosensitive polyimides have been developed. PAAs with a twisted conformation in the main chains were prepared from 2,2′,6,6′‐biphenyltetracarboxylic dianhydride (2,2′,6,6′‐BPDA) and aromatic diamines. Imidization of PAAs was achieved by chemical treatment using trifluoroacetic anhydride. Among them, the PAA derived from 2,2′,6,6′‐BPDA and 4,4′‐(1,3‐phenylenedioxy)dianiline was converted to the polyimide by thermal treatment. The heating at 300 °C under nitrogen did not complete thermal imidization of PAAs having glass‐transition temperatures (Tg)s higher than 300 °C to the corresponding PIs. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6385–6393, 2006  相似文献   

14.
A novel aromatic diamine monomer bearing tertbutyl and 4‐tertbutylphenyl groups, 3,3′‐ditertbutyl‐4,4′‐diaminodiphenyl‐4′′‐tertbutylphenylmethane (TADBP), was prepared and characterized. A series of non‐coplanar polyimides (PIs) were synthesized via a conventional one‐step polycondensation from TADBP and various aromatic dianhydrides including pyromellitic dianhydride (PMDA), 3,3′,4,4′‐biphenyltetracarboxylic dianhydride (BPDA), 4,4′‐oxydiphthalic anhydride (OPDA), 3,3′,4,4′‐benzophenone tetracarboxylic dianhydride (BTDA) and 4,4′‐(hexafluoroisopropylidene)dipthalic anhydride (6FDA). All PIs exhibit excellent solubility in common organic solvents such as N,N‐dimethylformamide (DMF), N,N‐dimethylacetamide (DMAc), N‐methyl‐2‐pyrrolidone (NMP), dimethyl sulfoxide (DMSO), chloroform (CHCl3), tetrahydrofuran (THF), and so on. Furthermore, the obtained transparent, strong and flexible polyimide films present good thermal stability and outstanding optical properties. Their glass transition temperatures (Tgs) are in the range of 298 to 347°C, and 10% weight loss temperatures are in excess of 490°C with more than 53% char yield at 800°C in nitrogen. All the polyimides can be cast into transparent and flexible films with tensile strength of 80.5–101 MPa, elongation at break of 8.4%–10.5%, and Young's modulus of 2.3–2.8 GPa. Meanwhile, the PIs show the cutoff wavelengths of 302–356 nm, as well as low moisture absorption (0.30% –0.55%) and low dielectric constant (2.78–3.12 at 1 MHz).  相似文献   

15.
The sorption of compressed carbon dioxide and methane in a series of all‐aromatic poly(etherimide) (PEI) thin films is presented. The polymer films are derived from the reactions between an arylether diamine (P1) and four different dianhydrides [3,3′,4,4′‐oxydiphthalic dianhydride (ODPA), 3,3′,4,4′ biphenyltetra‐carboxylic dianhydride (BPDA), 3,3′,4,4′‐benzo‐phenonetetracarboxylic dianhydride (BTDA), and pyromellitic dianhydride (PMDA)] that have been selected to systematically change the flexibility of the polymer backbone, the segmental mobility, and the nonequilibrium excess free volume (EFV) of the polymer. The EFV, gas sorption capacities, and sorption‐ and temperature‐induced dynamic changes in film thickness and refractive index have been investigated by spectroscopic ellipsometry. The sorption capacity depends to a great extent on the PEI backbone composition. PMDA‐P1 shows the highest carbon dioxide sorption, combined with the lowest sorption selectivity because of the predominant sorption of methane in the EFV. For ODPA‐P1, the highest sorption selectivity is obtained, while it shows little long‐term relaxations at carbon dioxide pressures up to 25 bar. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 986–993  相似文献   

16.
Summary: A copolycondesation-type poly (amic acid) (PAA) was synthesized using pyromellitic dianhydride (PMDA) and 3,3′,4,4′-benzophenonetetracarboxylic dianhydride (BTDA) as dianhydride monomers, and 4,4′-oxydianiline (ODA) as a diamine monomer under microwave irradiation in dimethylformamide (DMF). PAA was then converted into a polyimide (PI) by an imidization. The structure and performance of the polymer were characterized by Fourier-transform infrared (FT-IR) spectroscopy, Proton nuclear magnetic resonance (1H NMR) spectrometry, viscosity, X-ray diffraction (XRD), and thermogravimetric (TG) analyses. The results showed that under microwave irradiation, the intrinsic viscosity and the yield of PAA were increases, and the reaction time was shortened. The FT-IR spectra of the polymer revealed characteristic peaks for PI around 1778 and 1723 cm–1. TG curves indicated that the obtained PI began to lose weight at 535 °C, and its 10% thermal decomposition temperature under N2 was 587 °C.  相似文献   

17.
Polyimide thin films were synthesized from 3,3′,4,4′‐biphenyltetracarboxylic acid dianhydride (BPDA) and four different diamines (p‐phenylene diamine, 4,4′‐oxydiphenylene diamine, 4,4′‐biphenylene diamine, and 4,4′‐sulfonyldiphenylene diamine). The nanoindentation behavior of the resulting polyimides, namely, poly(p‐phenylene biphenyltetracarboximide) (BPDA‐PDA), poly(4,4′‐biphenylene biphenyltetracarboximide) (BPDA‐BZ), poly(4,4′‐oxydiphenylene biphenyltetracarboximide) (BPDA‐ODA), and poly(4,4′‐sulfonyldiphenylene biphenyltetracarboximide) (BPDA‐DDS), were investigated. Also, the morphological properties were characterized with a prism coupler and wide‐angle X‐ray diffraction and were correlated to the nanoindentation studies. The nanoindentation behavior and hardness varied quite significantly, depending on the changes in the chemical and morphological structures. The hardness of the polyimide thin films increased in the following order: BPDA‐DDS < BPDA‐ODA < BPDA‐BZ < BPDA‐PDA. For all the polyimide thin films, except that of BPDA‐BZ, the hardness decreased with an increase in the load. The birefringence, a measure of the molecular in‐plane orientation, increased in the following order: BPDA‐DDS < BPDA‐ODA < BPDA‐PDA < BPDA‐BZ. The X‐ray diffraction studies revealed that the crystallinity of the polyimide thin films varied with the changes in the chemical structure. The studies showed that the indentation response with an applied load and the hardness by nanoindentation for the BPDA‐based polyimides were closely related to the morphological structure. The nanoindentation and birefringence results revealed that the mechanical properties of the polyimide thin films were dependent on the crystallinity, which arose because of the chain order along the chain axis and the molecular packing order. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 861–870, 2004  相似文献   

18.
Polyamic acid precursors were prepared by mixing dianhydride of 3,3',4,4'-benzophenone-tetracarboxylic dianhydride (BTDA), 1,2,3,4-benzene-tetracarboxylic dianhydride (pyrromellitic dianhydride PMDA), cis-1,2,3,4-cyclopentane-tetracarboxylic dianhydride (CPDA), the diamine (alkyl 3,5-diaminobenzoate) with side chain, and 4,4'-oxydianiline (ODA) without side chain. Copolyimide films with various side chain lengths were prepared by thermal imidization of polyamic acid precursors. The roughness of rubbed polyimide surface increased with increase in the side chain length. The pretilt angle for the BTDA and PMDA series polyimide (PI) increased exponentially with increase in side chain length. Various pretilt angles were obtained on the synthesized polyimides. In the case of CPDA series PI, the pretilt angle was nearly constant at 0 until the alkyl side chain length reached 12 (C12) and then increased markedly at C18. Models of pretilt angle generation were tested.  相似文献   

19.
A novel aromatic diamine monomer, 3,3′‐diisopropyl‐4,4′‐diaminodiphenyl‐3′′,4′′‐difluorophenylmethane (PAFM), was successfully synthesized by coupling of 2‐isopropylaniline and 3,4‐difluorobenzaldehyde. The aromatic diamine was adopted to synthesize a series of fluorinated polyimides by polycondensation with various dianhydrides: pyromellitic dianhydride (PMDA), 3,3′,4,4′‐biphenyltetracarboxylic dianhydride (BPDA), 4,4′‐oxydiphthalic anhydride (ODPA) and 3,3′,4,4′‐benzophenone tetracarboxylic dianhydride (BTDA) via the conventional one‐step method. These polyimides presented excellent solubility in common organic solvents, such as N,N‐dimethylformamide (DMF), N,N‐dimethyl acetamide (DMAc), dimethyl sulfoxide (DMSO), N‐methyl‐2‐pyrrolidone (NMP), chloroform (CHCl3), tetrahydrofuran (THF) and so on. The glass transition temperatures (Tg) of fluorinated polyimides were in the range of 260–306°C and the temperature at 10% weight loss in the range of 474–502°C. Their films showed the cut‐off wavelengths of 330–361 nm and higher than 80% transparency in a wavelength range of 385–463 nm. Moreover, polymer films exhibited low dielectric properties in the range of 2.76–2.96 at 1 MHz, as well as prominent mechanical properties with tensile strengths of 66.7–97.4 MPa, a tensile modulus of 1.7–2.1 GPa and elongation at break of 7.2%–12.9%. The polymer films also showed outstanding hydrophobicity with the contact angle in the range of 91.2°–97.9°.  相似文献   

20.
A new kink diamine with trifluoromethyl group on either side, bis[4-(2-trifluoromethyl-4-aminophenoxy)phenyl]diphenylmethane (BTFAPDM) , was reacted with various aromatic dianhydrides to prepare polyimides via poly (amic acid) precursors followed by thermal or chemical imidization. Polyimides were prepared using 3,3′, 4,4′-biphenyltetracarboxylic dianhydride(1), 4,4′-oxydiphthalic anhydride(2), 3,3′,4,4′-benzophenonetetracarboxylic dianhydride (3), 4,4′-sulfonyldiphthalic anhydride(4), and 4,4′-hexafluoroisopropylidene-diphathalic anhydride(5). The fluoro-polyimides exhibited low dielectric constants between 2.46 and 2.98, light color, and excellent high solubility. They exhibited glass transition temperatures between 227 and 253°C, and possessed a coefficient of thermal expansion (CTE) of 60-88 ppm/°C. Polymers PI-2, PI-3, PI-4, PI-5 showed excellent solubility in the organic solvents: N-methyl-2-pyrrolidinone (NMP), N,N-dimethylacetamide (DMAc), N,N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), pyridkie and tetrahydrofuran (THF). Inherent viscosity of the polyimides were found to range between 0.58 and 0.72 dLg-1. Thermogravimetric analysis of the polyimides revealed a high thermal stability decomposition temperature in excess of 500°C in nitrogen. Temperature at 10 % weight loss was found to be in the range 506-563°C and 498-557°C in nitrogen and air, respectively. The polyimide films had a tensile strength in the range 75-87 MPa; tensile modulus, 1.5-2.2 GPa; and elongation at break, 6-7%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号