首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fabrication of micron-sized poly(methyl methacrylate) (PMMA) polymer optical fibers doped with rhodamine B as an organic dye is demonstrated. Highly aligned and defect-free fibers are fabricated by using the stable jet electrospinning (SJES) method and systematically varying critical parameters such as solvent type and polymer concentration. At optimal conditions, for example, a polymer concentration of 35 wt% of PMMA in butanone, ribbon-shaped fibers with a smooth surface and diameter of about 20 μm could be spun using SJES mode and deposited on a rotating drum as target in a highly aligned manner. Photoluminescence spectra of the doped fibers excited longitudinally and transversely with a laser show an excitation peak with full-width-at-half-maximum of only 5.05 nm and a low lasing threshold at a pump energy of 0.55 μJ, indicating that SJES could become a new source of amplified optics components or organic solid-state fiber lasers.  相似文献   

2.
We synthesized two novel organic nonlinear optical chromophores—chiral S(+)‐N‐[p‐(4‐nitrostyryl) phenyl] prolinol and non‐chiral [p‐(4‐nitrostyryl) phenyl] piperdine—as potential laser‐active dyes for photonic applications. Both materials show good optical transmittance in the telecommunication frequency region, desirable solubility in acrylic polymer optical fiber matrices, and attractive fluorescence properties that are advantageous for laser‐gain materials and devices. Subsequently, these two chromophores were incorporated into poly(methyl methacrylate) and poly(ethyl methacrylate) and drawn into polymer optical fibers. The relevant properties of these organic dye‐doped fibers have been studied, revealing essential attributes of laser‐active characteristics. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1794–1801, 2001  相似文献   

3.
溶胶-凝胶法制备光学杂化功能材料   总被引:9,自引:0,他引:9  
刘冰  强亮生 《化学进展》2005,17(1):0-90
在简述溶胶-凝胶法基本原理的基础上,介绍了设计杂化材料的原则及预掺杂法、后掺杂法和原位化学合成法三种溶胶-凝胶法制备光学杂化功能材料的途径;综述了稀土发光材料、波导材料和光致变色材料三种光学杂化功能材料,并结合国内外的研究提出开展光学杂化功能材料研究的重要方向.  相似文献   

4.
Nonlinear optical (NLO) switches driven by a solid-state structural phase transition have attracted extensive attention; however, above-room-temperature solid-state NLO switch materials are still sparse. Herein, we report an above-room-temperature tin halide organic–inorganic hybrid quadratic NLO switchable material, N-methylpyrrolidinium trichloride stannite ([C5H12N]SnCl3, MPSC). The MPSC crystal exhibits a phase-matchable NLO property that is 1.1 times that of KH2PO4 (KDP) and NLO switching behavior, changing from a high second harmonic generation (SHG) response to a low SHG response at 383 K, thereby demonstrating its prospective applications in the field of nonlinear optics. Variable-temperature crystal structural analysis combined with theoretical calculations revealed that the large NLO response stems from the inorganic SnCl3 moiety, whereas the high-performance NLO switching properties mainly originate from the order/disorder transformation of the N-methylpyrrolidinium. This work provides a new approach to designing and exploring new high-performance quadratic NLO switches involving tin halide organic–inorganic hybrids.  相似文献   

5.
王玲  戴成虎  尹百鹏  张闯  陈姝敏 《化学通报》2023,86(11):1351-1356
微纳光纤与其他微纳结构的集成可以拓展荧光光纤传感器检测范围和集成度,是光纤传感领域的研究热点。目前,国际上关于荧光光纤传感器这一领域的研究还处于单一检测物荧光响应的阶段,对多检测物的多通道荧光响应仍存在很大挑战。本文结合微纳光纤的光波导性能以及有机荧光材料的光功能特性,制备了能够同时激发和收集多种荧光的微纳光纤,并将之应用于高性能荧光光纤传感器的制备。通过选用不同荧光波长的有机材料与凝胶掺杂,制备了多荧光发射的光纤涂层材料,可控构筑了多组分荧光检测剂掺杂凝胶涂层。利用荧光光谱结合色度图分析,确定检测物与色坐标的关系,实现了多检测物的多通道荧光响应,为实现多荧光光纤传感器的可控构筑提供了有益的借鉴和指导意义。  相似文献   

6.
Nonlinear optical properties are a sensitive probe of the electronic and solid-state structure of organic compounds and as a consequence find various applications in many areas of optoelectronics including optical communications, laser scanning and control functions, and integrated optics technology. Because of their strongly delocalized π electronic systems, polymeric and non-polymeric aromatic compounds show highly nonlinear optical effects. Nowadays, polymer chemists are able to tailor specific materials properties for various applications. Some organic substances with π electronic systems exhibit the largest known nonlinear coefficients, often considerably larger than those of the more conventional inorganic dielectrics and semiconductors, and thus show promise for thin-film fabrication, allowing the enormous function and cost advantages of integrated electronic circuitry. The electronic origins of nonlinear optical effects in organic π electronic systems are reviewed, with special emphasis being given to second-order nonlinear optical effects. Methods for measuring nonlinear optical responses are outlined, and the critical relationships of the propagation characteristics of light to observed nonlinear optical effects and to solid-state structure are discussed. Finally, the synthesis and characterization of organic crystals and polymer films with large second-order optical nonlinearities are summarized.  相似文献   

7.
Microlasers and waveguides have wide applications in the fields of photonics and optoelectronics. Lanthanide‐doped luminescent materials featuring large Stokes/anti‐Stokes shift, long excited‐state lifetime as well as sharp emission bandwidth are excellent optical components for photonic applications. In the past few years, great progress has been made in the design and fabrication of lanthanide‐based waveguides and lasers at the micrometer length scale. Waveguide structures and microcavities can be fabricated from lanthanide‐doped amorphous materials through top‐down process. Alternatively, lanthanide‐doped organic compounds featuring large absorption cross‐section can self‐assemble into low‐dimensional structures of well‐defined size and morphology. In recent years, lanthanide‐doped crystalline structures displaying highly tunable excitation and emission properties have emerged as promising waveguide and lasing materials, which substantially extends the range of lasing wavelength. In this minireview, we discuss recent advances in lanthanide‐based luminescent materials that are designed for waveguide and lasing applications. We also attempt to highlight challenging problems of these materials that obstacle further development of this field.  相似文献   

8.
We report for the first time on the preparation of organically-doped room temperature processed sol-gel-derived micron scale optical fibers as platforms for chemical- and bio-sensors. Micron scale optical fibers are drawn from fluorescent dye-doped tetraethoxysilane (TEOS)-derived sol-gel solution processed under ambient conditions. Such a simple methodology to entrap organic and even bioactive species within the optical fiber offers many advantages over more conventional ways of immobilizing organic probes for the development of optical sensors. Specifically, we report on the photophysical properties of fluorescein (a pH sensitive fluorescent dye) and rhodamine 6G (R6G; laser dye) entrapped within sol-gel-derived optical fibers. We present the preliminary results on the viability of such doped optical fibers for chemical sensing. Our results demonstrate that a fluorescein-doped sol-gel-derived optical fiber responds to ammonia and acid vapors with a response time of 1–2 seconds.  相似文献   

9.
Inorganic–organic hybrid polymers have been developed and tested for evaluation in optical and electrical applications. Although hybrid inorganic–organic polymers can be synthesized by sol–gel chemistry at first, the physical properties of hybrid inorganic–organic polymers are changed during thin film-making processes, that is, photocuring and thermal curing. To investigate the effect of photoinitiator on the material properties during processing, a model system containing methacrylic groups as organically polymerizable units was selected. The conversion of CC double bond of methacrylic groups depending on some kinds of photoinitiator quantities was characterized by Fourier transform infrared spectroscopy. It was confirmed to correlate the degree of CC double bond conversion with the refractive indices. Thermodynamically, the enthalpy of the photopolymerization of hybrid polymer was investigated by UV–DSC. UV–DSC spectra showed the exothermic nature of photopolymerization of ORMOCER® to be in dependence of photoinitiator quantities. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1979–1986, 2004  相似文献   

10.
Hybrid organic-inorganic materials are investigated as suitable materials for inclusion of fullerene derivatives and for fabrication of laser protection devices. A specific synthesis has been developed in order to optimize non-linear optical performances of fullerene derivatives. 3-glicydoxypropyltrymethoxysilane has been used as an inorganic and organic network former to obtain the host material. The sol-gel synthesis consists of the hydrolysis and condensation in acidic conditions of the inorganic network. Epoxy polymerization has been achieved by using zirconium or BF3 alkoxides precursors. Bulk and multilayer materials doped with a fullerene derivative have been fabricated. They show good optical requirements: high fullerenes concentration, high microstructural homogeneity, high laser damage threshold and high optical limiting efficiency. Optical limiting (OL) mechanisms have been investigated. The most effective in the sol-gel materials is the reverse saturable absorption (RSA) one. However, different mechanisms, like non-linear (NL) scattering and NL refraction contribute to a different extent. Open- and closed-aperture OL and z-scan measurements on sol-gel samples show the contribution of NL scattering and NL refraction at 690 nm. Laser damage threshold has been characterized as a function of the structure of the samples and of the optical configurations (f/66 and f/5).  相似文献   

11.
《中国化学快报》2020,31(12):3055-3064
Hybrid organic–inorganic perovskite materials have attracted significant attention of most researchers in recently years, which is ascribed to the superior photoelectric properties, such as the suitable band gaps for harvesting sunlight, and exhibit high optical adsorption, high charge-carrier lifetimes and long diffusion lengths. The photodetectors, light-emitting diodes, solar cells and photocatalysts represent the remarkable applications for the hybrid organic–inorganic perovskite materials. Herein, we review the recent progress of hybrid organic–inorganic perovskite-based photodetectors, light-emitting diodes, solar cells and photocatalysts. The challenges and outlook for the hybrid organic–inorganic perovskite-based photodetectors, light-emitting diodes, solar cells and photocatalysts are considered.  相似文献   

12.
A series of crossslinked organic and organic/inorganic polymers based on maleimide chemistry have been investigated for second‐order non‐linear optical (NLO) materials with excellent thermal stability and low optical loss. Two reactive chromophores (maleimide‐containing azobenzene dye and alkoxysilane‐containing azobenzene dye) were incorporated into a phosphorus‐containing maleimide polymer, respectively. The selection of the phosphorus‐containing maleimide polymer as the polymeric matrices provides enhanced solubility and thermal stability, and excellent optical quality. Moreover, a full interpenetrating network (IPN) was formed through simultaneous addition reaction of the phosphorus‐containing maleimide, and sol‐gel process of alkoxysilane dye (ASD). Atomic force microscopy (AFM) results indicate that the inorganic networks are distributed uniformly throughout the polymer matrices on a nano‐scale. The silica particle sizes are well under 100 nm. Using in situ contact poling, the r33 coefficients of 2.2–17.0 pm/V have been obtained for the optically clear phosphorus‐containing NLO materials. Excellent temporal stability (100°C) and low optical loss (0.99–1.71 dB/cm; 830 nm) were also obtained for these phosphorus‐containing materials. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
Gold nanoparticles (AuNPs) with different diameters (from 4 up to 10 nm) were immobilized within a amine-alcohol-silicate matrix [AA(600)] by mixing a preformed Au nanoparticle colloidal solution with the precursors of amine-alcohol-silicate, prior to the sol–gel transition. The organic–inorganic hybrid (OIH) nanocomposites were synthetized by sol–gel method by reaction of amino-functionalized polyether and a siloxane functionalized with a terminal epoxy group. The obtained homogeneous, high transparent and stable materials exhibit enhanced optical and electrical properties derived from plasmonic effects associated with the size and form of the nanoparticle dopants which show to be preserved during the synthesis steps. Performed electrochemical impedance spectroscopy revealed that OIH gels doped with AuNPs exhibit low conductivity that shows to be slightly dependent on dispersed Au particle sizes. The characterization of this materials by current–voltage (I–V) measurements shows that these materials exhibit an electrical stability within an range of applied potential of about 5 V and suggests that charge transfer mechanism is strongly dependent on the potential applied across the OIH gel as observed by testing different charge transfer models: space-charge-limited current, Poole–Frenkel, Schottky emission and hopping conduction or the Schottky-Simmons. The results obtained from the characterization the electrochemical properties shows that the produced material to be relevant for the potential application of OIH embedded AuNPs nanocomposites in non-volatile organic memory devices.  相似文献   

14.
The entrapment of organic dyes in inorganic solids offers several advantage for solid-state laser applications with respect to the use of liquid or polymer hosts. Among the various inorganic hosts, silica is preferred for its superior mechanical, thermal and optical properties. Organic dyes, such as Rhodamine 6G (Rh6G), can be immobilised in SiO2 both physically (materials of class I), and by covalent bonds (class II materials). In the past years Rh6G-SiO2 class I hybrids were prepared. In this work we propose, for the first time, a Rh6G-SiO2 class II hybrids. We describe the preparation of a suitable sol-gel Rh6G precursor verified by FT-IR analysis and report the characterization of the hybrid materials by means of thermal and porosimetric analysis and optical spectroscopy measurements. The precursor is thermally stable up to ∼250°C, and its optical characteristics (UV-VIS absorbance and photoluminescence, PL) do not change with respect to those of the pristine dye molecule. The PL spectra of the final hybrids show that they are promising candidates for applications in solid state dye lasers.  相似文献   

15.
Singlet–triplet conversion in organic light‐emitting materials introduces non‐emissive (dark) and long‐lived triplet states, which represents a significant challenge in constraining the optical properties. There have been considerable attempts at separating singlets and triplets in long‐chain polymers, scavenging triplets, and quenching triplets with heavy metals; nonetheless, such triplet‐induced loss cannot be fully eliminated. Herein, a new strategy of crafting a periodic molecular barrier into the π‐conjugated matrices of organic aromatic fluorophores is reported. The molecular barriers effectively block the singlet‐to‐triplet pathway, resulting in near‐unity photoluminescence quantum efficiency (PLQE) of the organic fluorophores. The transient optical spectroscopy measurements confirm the absence of the triplet absorption. These studies provide a general approach to preventing the formation of dark triplet states in organic semiconductors and bring new opportunities for the development of advanced organic optics and photonics.  相似文献   

16.
This paper describes a new computational method for predicting the optical behaviour of doped inorganic materials. There is considerable interest in using inorganic materials in photonic devices, and in many cases, the optical properties of these materials depend on doping by ions such as those from the rare earth series. Among the inorganic materials of interest are the mixed metal fluorides (e.g. BaLiF(3), BaY(2)F(8), YLiF(4), LiCaAlF(6), LiSrAlF(6)), doped with trivalent rare earth ions. The paper describes the use of Mott-Littleton calculations to determine the optimum location for dopant ions, followed by crystal field calculations which make direct use of the output of the Mott-Littleton calculations to calculate the optical properties of the dopant ion taking into account its symmetry and the positions of the surrounding ions, including any vacancies or interstitial ions present by virtue of charge compensation. It is then possible to predict whether a given dopant ion at a particular site in a material will have favourable optical properties.  相似文献   

17.
Optical waveguides synthesized at the micro/nanoscale have drawn great interest for their potential applications in high speed miniaturized photonic integrations. In this Perspective article, we mainly focus on the related works on active optical waveguides based on functional small organic molecules in micro/nano regime. We begin with a general overview of recent progress in sub-wavelength optical waveguides, including the development of waveguide materials of inorganic semiconductors, polymers, and small organic molecules. Then brief highlights are put on the recently reported organic optical waveguides with various unique optical properties induced by the ordered molecular aggregations in the micro/nano-sized solid-state structures, such as polarized emission, lasing, aggregation-induced enhanced emission, etc. This article concludes with a summary and our personal view about the direction of future development in organic opto-functional waveguides as photonic devices.  相似文献   

18.
The literature on inorganic open-framework materials abounds in the synthesis and characterization of metal silicates, phosphates and carboxylates. Most of these materials have an organic amine as the template. In the last few years, it has been shown that anions such as sulfate, selenite and selenate can also be employed to obtain organically templated open-framework materials. This tutorial review provides an up-to-date survey of organically templated metal sulfates, selenites and selenates, prepared under hydrothermal conditions. The discussion includes one-, two-, and three-dimensional structures of these materials, many of which possess open architectures. The article should be useful to practitioners of inorganic and materials chemistry, besides students and teachers. The article serves to demonstrate how most oxy-anions can be used to build complex structures with metal-oxygen polyhedra.  相似文献   

19.
4-hydroxy-4 ‘-nitro azobenzene (NHA) and 4-amino-4 ‘-nitro azobenzene (DO3) were prepared respectively from p-nitrophenylamine as a precursor compound. Two kinds of doped organic/inorganic hybrid nonlinear optical (NLO) materials containing NHA and DO3 were synthesized by Sol-Gel process. The preparation and properties of two NLO materials were studied and characterized by FTIR, IH-NMR, UV-VIS, SEM, DSC and SHG measurements. The results show that the maximum doping amounts of NHA and DO3 in two doped hybrid NLO materials are 7.2(wt)% and ll.3(wt)% respectively, and the corresponding second-order NLO coefficients (d33values) are 2.91 ×l0^-3esu and 6.14×10 -8 esu. Two doped NLO materials have relatively good RT stability, after 90 days at RT the d33 values can maintain about 85% of their initial values, but after l0h at 100℃ can only maintain about 50% of their initial values. In this report, the reasons for high-temperature instability of doped materials were discussed, and the possible improvements were also suggested.  相似文献   

20.
This is meant to be a brief overview of the developments of research activities in Japan on organometallic compounds related to their use in electronic and optoelectronic devices. The importance of organometallic compounds in the deposition of metal and semiconductor films for the fabrication of many electronic and opto-electronic devices cannot be exaggerated. Their scope has now extended to thin-film electronic ceramics and high-temperature oxide superconductors. A variety of organometallic compounds have been used as source materials in many types of processing procedures, such as metal–organic chemical vapor deposition (MOCVD), metalorganic vapor-phase epitaxy (MOVPE), metal–organic molecular-beam epitaxy (MOMBE), etc. Deposited materials include silicon, Group III–V and II–VI compound semiconductors, metals, superconducting oxides and other inorganic materials. Organometallic compounds are utilized as such in many electronic and optoelectronic devices; examples are conducting and semiconducting materials, photovoltaic, photochromic, electrochromic and nonlinear optical materials. This review consists of two parts: (I) research related to the fabrication of semiconductor, metal and inorganic materials; and (II) research related to the direct use of organometallic materials and basic fundamental research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号