首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
A novel spirobichroman unit containing dietheramine, 6,6′-bis(4-aminophenoxy)-4,4,4′,4′,7,7′-hexamethyl-2,2′-spirobichroman ( 3 ), was prepared by the nucleophilic substitution of 6,6′-dihydroxy-4,4,4′,4′,7,7′-hexamethyl-2,2′-spirobichroman with p-chloronitrobenzene in the presence of K2CO3 followed by hydrazine catalytic reduction of the intermediate dinitro compound. A series of polyimides were synthesized from diamine 3 and various aromatic dianhydrides by a conventional two-stage procedure through the formation of poly(amic-acid)s followed by thermal imidization. The intermediate poly(amic-acid)s had inherent viscosities of 1.00–2.78 dL/g. All the poly-(amic-acid)s could be thermally cyclodehydrated into flexible and tough polyimide films, and some polyimides were soluble in polar solvents such as N-methyl-2-pyrrolidone (NMP), N,N-dimethylacetamide (DMAc), and N,N-dimethylformamide (DMF). These polyimides had glass transition temperatures (Tg) in the range of 236–256°C, and 10% weight loss occurred up to 450°C. Furthermore, a series of polyamides and poly(amide-imide)s with inherent viscosities of 0.71–2.29 dL/g were prepared by direct polycondensation of the diamine 3 with various aromatic dicarboxylic acids and imide ring-containing dicarboxylic acids by means of triphenyl phosphite and pyridine. All the polyamides and poly(amide-imide)s were readily soluble in polar solvents such as DMAc, and tough and flexible films could be cast from their DMAc solutions. These polymers had glass transition temperatures in the range of 137–228°C and 10% weight loss temperatures in the range of 419–443°C in air and 404–436°C in nitrogen, respectively. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 1487–1497, 1997  相似文献   

2.
A spirobichroman structure-containing diether anhydride (SBCDA), 6,6′-bis(3,4-dicarboxyphenoxy)-4,4,4′,4′,7,7′-hexamethyl-2,2′-spirobichroman dianhydride, was prepared by the nucleophilic nitrodisplacement of 4-nitrophthalonitrile with the phenolate ion of 6,6′-dihydroxy-4,4,4′,4′,7,7′-hexamethyl-2,2′-spirobichroman, followed by alkaline hydrolysis of the intermediate tetranitrile and dehydration of the resulting tetraacid. A series of high molecular weight poly(ether imide)s with inherent viscosities between 0.45 and 1.28 dL/g were synthesized from SBCDA and various aromatic diamines via a conventional two-stage procedure that included ring-opening polyaddition in N,N-dimethylacetamide (DMAc) to give poly(amic acid)s, followed by thermal cyclization to poly(ether imide)s. The intermediate poly(amic acid)s had inherent viscosities of 0.70–1.50 dL/g. Except for the poly(ether imide) obtained from p-phenylenediamine, the other poly(ether imide)s were soluble in various organic solvents and could be solution-cast into transparent, flexible, and tough films. These poly(ether imide)s had glass transition temperatures in the range 175–262°C and showed no significant decomposition below 420°C, with 10% weight loss being recorded above 446°C in nitrogen or air. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 2801–2809, 1997  相似文献   

3.
A series of new soluble polyamides having isopropylidene and methyl-substituted arylene ether moieties in the polymer chain were prepared by the direct polycondensation of 3,3′,5,5′-tetramethyl-2,2-bis[4-(4-carboxyphenoxy)phenyl]propane and various diamines in N-methyl-2-pyrrolidinone (NMP) containing CaCl2 using triphenyl phosphite and pyridine as condensing agents. Polymers were produced with moderate to high inherent viscosities of 0.85–1.47 dL g−1 while the weight-average molecular weight and number-average molecular weight were in the range of 86,700–259,000 and 43,300–119,000, respectively. All the polymers were readily dissolved in polar aprotic solvents such as NMP, N,N-dimethylacetamide, and N,N-dimethylformamide, as well as less polar solvents such as m-cresol and pyridine, and even soluble in tetrahydrofuran. These polymers were solution-cast into transparent, flexible and tough films. All of the polymers were amorphous and the polyamide films had a tensile strength range of 82–122 MPa, an elongation at break range of 6–18%, and a tensile modulus range of 2.0–2.8 GPa. These polyamides had glass transition temperatures between 233–260°C and 10% weight loss temperatures in the range of 450–489 and 459–493°C in nitrogen and air atmosphere, respectively. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1997–2003, 1999  相似文献   

4.
A new diamine containing spirobisindane and phenazine units, namely, 3,3,3′,3′‐tetramethyl‐2,2′,3,3′‐tetrahydro‐1,1′‐spirobi[cyclopenta[b]phenazine]‐7,7′‐diamine (TTSBIDA) was synthesized starting from commercially available 5,5′,6,6′‐tetrahydroxy‐3,3,3′,3′‐tetramethyl‐1,1′‐spirobisindane (TTSBI). TTSBI was oxidized to 3,3,3′,3′‐tetramethyl‐2,2′,3,3′‐tetrahydro‐1,1′‐spirobi[indene]‐5,5′,6,6′‐tetraone (TTSBIQ) which was subsequently condensed with 4‐nitro‐1,2‐phenylenediamine to obtain 3,3,3′,3′‐tetramethyl‐7,7′‐dinitro‐2,2′,3,3′‐tetrahydro‐1,1′‐spirobi[cyclopenta[b]phenazine] (TTSBIDN). TTSBIDN was converted into TTSBIDA by reduction of the nitro groups using hydrazine hydrate in the presence of Pd/C as the catalyst. A series of new polyimides of intrinsic microporosity (PIM‐PIs) were synthesized by polycondensation of TTSBIDA with commercially available aromatic dianhydrides. PIM‐PIs exhibited amorphous nature, high thermal stability (T10 > 480 °C) and intrinsic microporosity (BET surface area = 59–289 m2/g). The gas permeation characteristics of films of selected PIM‐PIs were evaluated and they exhibited appreciable gas permeability as well as high selectivity. The CO2 and O2 permeability of PIM‐PIs were in the range 185.4–39.2 and 30.6–6.2 Barrer, respectively. Notably, polyimide derived from TTSBIDA and 4,4′‐(hexafluoroisopropylidene)diphthalic anhydride (PIM‐PI‐6FDA) exhibited high CO2 and O2 permeability of 185.4 and 30.6 Barrer with CO2/CH4 and O2/N2 selectivity of 43.1 and 5.1, respectively. The data of PIM‐PI‐6FDA for CO2/CH4 and O2/N2 gas pairs were located near Robeson upper bound. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 766–775  相似文献   

5.
A novel aromatic dicarboxylic acid monomer, 4,4′-(2,3-naphthalenedioxy)-dibenzoic acid ( 3 ), was prepared by the fluorodisplacement reaction of p-fluorobenzonitrile with 2,3-dihydroxynaphthalene in N,N-dimethylformamide (DMF) in the presence of potassium carbonate followed by alkaline hydrolysis of the intermediate dinitrile. A series of novel aromatic polyamides containing ortho-linked aromatic units in the main chain were synthesized by the direct polycondensation of diacid 3 and a variety of aromatic diamines using triphenyl phosphite and pyridine as condensing agents in the N-methyl-2-pyrrolidone (NMP) solution containing dissolved calcium chloride. The resulting polyamides had inherent viscosities higher than 0.74 and up to 2.10 dL/g. All of these polyamides were soluble in polar solvents, such as NMP, DMF, N,N-dimethylacetamide (DMAc), and dimethyl sulfoxide. Transparent, flexible, and tough films could be cast from their DMAc or NMP solutions. The solvent-cast films had high tensile strengths and moduli. Extensions to break were relatively low, except for the polymers derived from 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane and 3,4′-oxydianiline, which had elongations of 82 and 62%, respectively. Except for the polyamide based on p-phenylenediamine, all the other polyamides were amorphous in nature. All the polymers are thermally stable to temperatures in excess of 450°C in either air or nitrogen atmosphere. The polymers exhibited glass transition temperatures ranging from 183 to 260°C and decomposition temperatures (10% weight loss) ranging from 462–523°C in air and 468–530°C in nitrogen. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 3385–3391, 1997  相似文献   

6.
4,4′-(2,7-Naphthalenedioxy)dibenzoic acid, a new aromatic dicarboxylic acid monomer, was prepared starting from 2,7-dihydroxynaphthalene and p-fluorobenzonitrile in three steps. Using triphenyl phosphite (TPP) and pyridine as condensing agents, a series of novel aromatic polyamides were synthesized by the direct polycondensation of the diacid monomer and aromatic diamines in N-methyl-2-pyrrolidone (NMP) solution containing dissolved calcium chloride. The resulting polyamides had inherent viscosities ranging from 0.48 to 0.67 dL/g. Most of these polyamides were readily soluble in polar solvents, such as NMP and N,N-dimethylacetamide (DMAc). Transparent, flexible, and tough films were cast from their DMAc solutions. They had tensile strengths of 65–70 MPa, elongations to break of 5–7%, and initial moduli of 1.4–1.6 GPa. Most of these polymers proved to be amorphous, with glass transition temperatures in the range between 143–227°C. Thermogravimetric analysis (TG) showed that all the polyamides were stable up to 450°C in both air and nitrogen atmospheres. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 1469–1478, 1997  相似文献   

7.
The synthesis and characterization of the fluoropolymers poly 1a – 1d and poly 2a – 2d with pendant hydroxyl groups were examined. The polyaddition of bis(epoxide)s [2,2′‐bis(4‐glycidyletherphenyl)hexafluoropropane and bisphenol A diglycidyl ether] with dicarboxylic acids (tetrafluoroterephthalic acid and terephthalic acid) and diols [2,2′‐bis(4‐hydroxyphenyl)hexafluoropropane, 2,2′,3,3′,5,5′,6,6′‐octafluoro‐4,4′‐biphenol, 1,4‐bis(hexafluorohydroxyisopropyl)benzene, and 1,3‐bis(hexafluorohydroxyisopropyl)benzene] was carried out at 50–100 °C for 6–48 h in the presence of quaternary onium salts (tetrabutylammonium bromide, tetrabutylammonium chloride, tetrabutylphosphonium bromide, and tetrabutylphosphonium chloride; 2.5 mol %) as catalysts in dimethyl sulfoxide, N‐methylpyrrolidone, dimethylformamide, dimethylacetamide, dioxane, diglyme, o‐dichlorobenzene, chlorobenzene, and toluene to afford the corresponding polymers, poly 1a – 1d and poly 2a – 2d , with number‐average molecular weights of 11,000–59,400 in 45–97% yields. The solubility of the obtained polymers was good, and their thermal stability might be assumed from their structures. A linear relationship was observed between the contents of the fluorine atoms and the refractive indices. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1395–1404, 2002  相似文献   

8.
Thermoplastic and organic‐soluble aromatic polyamides containing both bulky triphenylethane units and flexible ether linkages were prepared directly from 1,1‐bis[4‐(4‐carboxyphenoxy)phenyl]‐1‐phenylethane ( III ) with various aromatic diamines or from 1,1‐bis[4‐(4‐aminophenoxy)phenyl]‐1‐phenylethane ( V ) with various aromatic dicarboxylic diacids via triphenyl phosphite and pyridine. These polyamides had inherent viscosities ranging from 0.71 to 1.77 dL/g. All the polymers easily were dissolved in aprotic polar solvents such as N‐methyl‐2‐pyrrolidone and N,N‐dimethylacetamide, and some even could be dissolved in less polar solvents such as tetrahydrofuran. The flexible and tough films cast from the polymer solutions possessed tensile strengths of 89 to 104 MPa. The polyamides were thermally stable up to 460°C in air or nitrogen. Glass‐transition temperatures of these polyamides were observed in a range of 179 to 268°C via differential scanning calorimetry or thermomechanical analysis. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 247–260, 2000  相似文献   

9.
Poly(benzobisthiazole)s containing an ortho-tetramethyl substituted biphenyl moiety were synthesized via the polycondensation of 2,5-diamino-1,4-benzenedithiol dihydrochloride with 2,2′,6,6′-tetramethylbiphenyl-4,4′-dicarboxylic acid in poly(phosphoric acid) (PPA). The intrinsic viscosities of the tetramethylbiphenyl poly-(benzobisthiazole)s in chlorosulfonic acid at 30°C were in the range of 6.9–13.4 dL/g. Copolycondensation of 2,5-diamino-1,4-benzenedithiol dihydrochloride with terephthalic acid and 2,2′,6,6′-tetramethylbiphenyl-4,4′-dicarboxylic acid was carried out as well by varying the ratio of the two dicarboxylic acid monomers in the reactant mixture. The homopolymers and copolymers were characterized by Fourier transform infrared spectroscopy (FTIR) and 13C solid-state nuclear magnetic resonance spectroscopy (NMR). Thermal stability of the polymers was evaluated by thermogravimetric analysis (TGA) and thermogravimetric mass spectrum analysis (TG-MS). The tetramethylbiphenyl poly(benzobisthiazole)s were found to be more stable at elevated temperatures than the parent poly(p-phenylene benzobisthiazole) (PBZT). © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1407–1416, 1998  相似文献   

10.
A new ether‐bridged aromatic dicarboxylic acid, 2′,5′‐bis(4‐carboxyphenoxy)‐p‐terphenyl ( 3 ), was synthesized by the aromatic fluoro‐displacement reaction of p‐fluorobenzonitrile with 2′,5′‐dihydroxy‐p‐terphenyl in the presence of potassium carbonate, followed by alkaline hydrolysis. A set of new aromatic polyamides containing ether and laterally attached p‐terphenyl units was synthesized by the direct phosphorylation polycondensation of diacid 3 with various aromatic diamines. The polymers were produced with high yields and moderately high inherent viscosities (0.44–0.79 dL/g). The polyamides derived from 3 and rigid diamines, such as p‐phenylenediamine and benzidine, and a structurally analogous diamine, 2′,5′‐bis(4‐aminophenoxy)‐p‐terphenyl, were semicrystalline and insoluble in organic solvents. The other polyamides were amorphous and organosoluble and could afford flexible and tough films via solution casting. These films exhibited good mechanical properties, with tensile strengths of 91–108 MPa, elongations to break of 6–17%, and initial moduli of 1.95–2.43 GPa. These polyamides showed glass‐transition temperatures between 193 and 252 °C. Most of the polymers did not show significant weight loss before 450 °C, as revealed by thermogravimetric analysis in nitrogen or in air. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4056–4062, 2004  相似文献   

11.
The diamine 1,4-bis(4-aminophenoxy)-2,5-di-tert-butylbenzene, containing symmetric, bulky di-tert-butyl substituents and a flexible ether unit, was synthesized and used to prepare a series of polyamides by the direct polycondensation with various aromatic dicarboxylic acids in N-methyl-2-pyrrolidinone (NMP) using triphenyl phosphite and pyridine as condensing agents. All the polymers were obtained in quantitative yields with inherent viscosities of 0.32–1.27 dL g−1. Most of these polyamides, except II a , II d , and II e , showed an amorphous nature and dissolved in polar solvents and less polar solvents. Polyamides derived from 4,4′-sulfonyldibenzoic acid, 4,4′-(hexafluoro-isopropylidene)dibenzoic acid, and 5-nitroisophthalic acid were even soluble in a common organic solvent such as THF. Most polyamide films could be obtained by casting from their N,N-dimethylacetamide (DMAc) solutions. The polyamide films had a tensile strength range of 49–78 MPa, an elongation range at break of 3–5%, and a tensile modulus range of 1.57–2.01 GPa. These polyamides had glass transition temperatures ranging between 253 and 276°C, and 10% mass loss temperatures were recorded in the range 402–466°C in nitrogen atmosphere. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1069–1074, 1998  相似文献   

12.
The synthesis of a new diamine monomer, Nn‐butyl 3,12‐diamino‐5,6,9,10‐tetrahydro[5]helicene‐7,8‐dicarboxylic imide (4), that contains a helically locked, U‐shaped 4′,4″‐o‐terphenyl moiety is described. The monomer was polymerized with 3,3′,4,4′‐oxydiphthalic dianhydride and 2,2‐bis[4‐(4‐aminophenoxy)phenyl]propane to form a series of copoly(ether imide)s (5a–e). The incorporation of 4 into the poly(ether imide)s varied the glass‐transition temperature of the copolymers of which it was a part. There was a tendency to form macrocyclic materials at higher molar percentages of 4 during polymerization. The fluorescence of all the copoly(ether imide)s gradually decreased as the content derived from monomer 4 increased in the polymer. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 758–763, 2000  相似文献   

13.
A new diimide‐dicarboxylic acid, 2,2′‐dimethyl‐4,4′‐bis(4‐trimellitimidophenoxy)biphenyl (DBTPB), containing a noncoplanar 2,2′‐dimethyl‐4,4′‐biphenylene unit was synthesized by the condensation reaction of 2,2′‐dimethyl‐4,4′‐bis(4‐minophenoxy)biphenyl (DBAPB) with trimellitic anhydride in glacial acetic acid. A series of new polyamide‐imides were prepared by direct polycondensation of DBAPB and various aromatic diamines in N‐methyl‐2‐pyrrolidinone (NMP), using triphenyl phosphite and pyridine as condensing agents. The polymers were produced with high yield and moderate to high inherent viscosities of 0.86–1.33 dL · g−1. Wide‐angle X‐ray diffractograms revealed that the polymers were amorphous. Most of the polymers exhibited good solubility and could be readily dissolved in various solvents such as NMP, N,N‐dimethylacetamide (DMAc), N,N‐dimethylformamide (DMF), dimethyl sulfoxide, pyridine, cyclohexanone, and tetrahydrofuran. These polyamide‐imides had glass‐transition temperatures between 224–302 °C and 10% weight loss temperatures in the range of 501–563 °C in nitrogen atmosphere. The tough polymer films, obtained by casting from DMAc solution, had a tensile strength range of 93–115 MPa and a tensile modulus range of 2.0–2.3 GPa. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 63–70, 2001  相似文献   

14.
Poly(amic acid)s (PAAs) having the high solution stability and transmittance at 365 nm for photosensitive polyimides have been developed. PAAs with a twisted conformation in the main chains were prepared from 2,2′,6,6′‐biphenyltetracarboxylic dianhydride (2,2′,6,6′‐BPDA) and aromatic diamines. Imidization of PAAs was achieved by chemical treatment using trifluoroacetic anhydride. Among them, the PAA derived from 2,2′,6,6′‐BPDA and 4,4′‐(1,3‐phenylenedioxy)dianiline was converted to the polyimide by thermal treatment. The heating at 300 °C under nitrogen did not complete thermal imidization of PAAs having glass‐transition temperatures (Tg)s higher than 300 °C to the corresponding PIs. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6385–6393, 2006  相似文献   

15.
A new diamine, 2,2-bis[4-(4-aminophenoxy)phenyl]norbornane (BAPN), containing both ether and norbornane cardo groups, was synthesized in three steps started from norcamphor. A series of cardo polyamides were obtained by the direct polycondensation of BAPN and various aromatic dicarboxylic acids in N-methyl-2-pyrrolidinone (NMP) using triphenyl phosphite and pyridine as condensing agents. Polyamides had inherent viscosities in the range of 0.82–1.58 dL g−1, and were readily soluble in polar aprotic solvents such as NMP, N,N-dimethylacetamide (DMAc) and N,N-dimethylformamide and dimethyl sulfoxide. These polymers were cast in DMAc solution into transparent, flexible, and tough films that were further characterized by X-ray and mechanical analysis. All the polymers were amorphous, and the polyamide films had a tensile strength range of 71–89 MPa, an elongation at break range of 5–9%, and a tensile modulus range of 2.0–2.3 GPa. Polyamides showed glass transition temperatures in the range of 256–296°C as measured by DSC and thermogravimetric analysis indicated no weight loss below 450°C in nitrogen and air atmosphere. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2791–2794, 1999  相似文献   

16.
2,6-Bis(4-aminophenoxy)naphthalene (2,6-BAPON) was synthesized in two steps from the condensation of 2,6-dihydroxynaphthalene with p-chloronitrobenzene in the presence of potassium carbonate, giving 2,6-bis(4-nitrophenoxy)naphthalene, followed by hydrazine hydrate/Pd—C reduction. A series of new polyamides were synthesized by the direct polycondensation of 2,6-BAPON with various aromatic dicarboxylic acids in the N-methyl-2-pyrrolidone (NMP) solution containing dissolved metal salts such as CaCl2 or LiCl using triphenyl phosphite and pyridine as condensing agents. The polymers were obtained in quantitative yields with inherent viscosities of 0.62–2.50 dL/g. Most of the polymers were soluble in aprotic dipolar solvents such as N,N-dimethylacetamide (DMAc) and NMP, and they could be solution cast into transparent, flexible, and tough films. The casting films had yield strengths of 84–105 MPa, tensile strengths of 68–95 MPa, elongations at break of 8–36%, and tensile moduli of 1.4–2.1 GPa. The glass transition temperatures of the polyamides were in the range 155–225°C, and their 10% weight loss temperatures were above 505°C in nitrogen and above 474°C in air. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2147–2156, 1997  相似文献   

17.
New aromatic diamines having kink and crank structures, 2,2′-bis(p-aminophenoxy)biphenyl and 2,2′-bis(p-aminophenoxy)-1,1′-binaphthyl, were synthesized by the reaction of p-fluoronitrobenzene with biphenyl-2,2′-diol and 2,2′-dihydroxy-1,1′-binaphthyl, respectively, followed by catalytic reduction. Biphenyl-2,2′-diyl- and 1,1′-binaphthyl-2,2′-diyl-containing aromatic polyamides having inherent viscosities of 0.44–1.18 and 0.26–0.88 dL/g, respectively, were obtained either by the direct polycondensation or low-temperature solution polycondensation of the diamines with aromatic dicarboxylic acids (or diacid chlorides). These polymers were readily soluble in a variety of organic solvents including N,N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP), dimethyl sulfoxide, m-cresol, and pyridine. Transparent, pale yellow, and flexible films of these polymers could be cast from the DMAc or NMP solutions. These aromatic polyamides containing biphenyl and binaphthyl units had glass transition temperatures in the range of 215–255 and 266–303°C, respectively. They began to lose weight at ca. 380°C, with 10% weight loss being recorded at about 470°C in air. © 1993 John Wiley & Sons, Inc.  相似文献   

18.
New aromatic dicarboxylic acids having kink and crank structures, 2,2′-bis(p-carboxyphenoxy) biphenyl and 2,2′-bis(p-carboxyphenoxy)-1,1′-binaphthyl, were synthesized by the reaction of p-fluorobenzonitrile with biphenyl-2,2′-diol and 2,2′-dihydroxy-1,1′-binaphthyl, respectively, followed by hydrolysis. Biphenyl-2,2′-diyl-and 1,1′-binaphthyl-2,2′-diyl-containing aromatic polyamides having inherent viscosities of 0.58–1.46 dL/g and 0.63–1.30 dL/g, respectively, were obtained by the low-temperature solution polycondensation of the corresponding diacid chlorides with aromatic diamines. These polymers were readily soluble in a variety of organic solvents including N,N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP), dimethyl sulfoxide, m-cresol, and pyridine. Transparent, pale yellow, and flexible films of these polymers could be cast from the DMAc or NMP solutions. These aromatic polyamides containing biphenyl and binaphthyl units had glass transition temperatures in the range of 210–272 and 260–315°C, respectively. They began to lose weight around 380°C, with 10% weight loss being recorded at about 450°C in air. © 1993 John Wiley & Sons, Inc.  相似文献   

19.
An unsymmetrical and noncoplanar heterocyclic dianhydride was synthesized from a bisphenol‐like phthalazinone, 4‐(4‐hydroxylphenyl)‐2,3‐phthalazin‐1‐one, and a series of novel poly(ether imide)s based on it, with intrinsic viscosities of 0.67–1.42 dL/g, were obtained by one‐step solution polymerization in m‐cresol at 200 °C for 20 h. The polymers were readily soluble in N‐methyl‐2‐pyrrolidinone and m‐cresol. The poly(ether imide)s derived from 4,4′‐oxydianiline and 4,4′‐methylenedianiline were also very soluble in chloroform, 1,1′,2,2′‐tetrachloroethane, and N,N‐dimethylacetamide. The glass‐transition temperatures were 289–326 °C, as determined by differential scanning calorimetry. All the degradation temperatures for 5% weight loss occurred above 482 °C in nitrogen. The tensile strength of thin films of some of the polymers varied from 103.1 to 121.4 MPa. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 6089–6097, 2004  相似文献   

20.
New N-phenylated aromatic-aliphatic and all aromatic polyamides were prepared by the high-temperature solution polycondensation of 4,4′-dianilinobiphenyl with both aliphatic (methylene chain lengths of 6–11) and aromatic dicarboxylic acid chlorides. All of the aromatic-aliphatic polyamides and the wholly aromatic polyamides exhibited an amorphous nature and good solubility in amide-type and chlorinated hydrocarbon solvents, except for those aromatic polyamides containing p-oriented phenylene or biphenylylene linkages in the backbone; the latter were crystalline and insoluble in organic solvents except m-cresol. The N-phenylated aromatic-aliphatic polyamides and aromatic polyamides had glass transition temperatures in the range of 79–116°C and 207–255°C, respectively, and all the polymers were thermally stable with decomposition temperatures above 400°C in air. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. A Polym. Chem. 36: 2193–2200, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号