首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
FTIR spectra of mixtures of fluoroform (F3CH) and ammonia (NH3), have been studied in liquid xenon between 5400 and 500 cm-1. Spectroscopic evidence for the formation of a hydrogen bonded complex has been found and the complexation enthalpy Delta(LXe)H degrees in the temperature interval between 173 and 215 K, was determined to be 14.4 (7) kJ mol-1. The parallel fundamentals nu1 and nu2 of ammonia reveal a strong narrowing effect upon complex formation, whereas the perpendicular fundamentals nu3 and nu4 show a modest decrease of their width. CP corrected ab initio calculations at the MP2(FULL)/6-311++G(3df,2pd) level predict a linear geometry for the complex, characterized by a small red shift of the CH stretch frequency of fluoroform. The ab initio interaction energy was found to be compatible with the isolated molecule complexation energy extrapolated from the experimental Delta(LXe)H degrees .  相似文献   

2.
Infrared spectra of mass-selected F- -(CH4)n (n = 1-8) clusters are recorded in the CH stretching region (2500-3100 cm-1). Spectra for the n = 1-3 clusters are interpreted with the aid of ab initio calculations at the MP2/6-311++G(2df 2p) level, which suggest that the CH4 ligands bind to F- by equivalent, linear hydrogen bonds. Anharmonic frequencies for CH4 and F--CH4 are determined using the vibrational self-consistent field method with second-order perturbation theory correction. The n = 1 complex is predicted to have a C3v structure with a single CH group hydrogen bonded to F-. Its spectrum exhibits a parallel band associated with a stretching vibration of the hydrogen-bonded CH group that is red-shifted by 380 cm-1 from the nu1 band of free CH4 and a perpendicular band associated with the asymmetric stretching motion of the nonbonded CH groups, slightly red-shifted from the nu3 band of free CH4. As n increases, additional vibrational bands appear as a result of Fermi resonances between the hydrogen-bonded CH stretching vibrational mode and the 2nu4 overtone and nu2+nu4 combination levels of the methane solvent molecules. For clusters with n < or = 8, it appears that the CH4 molecules are accommodated in the first solvation shell, each being attached to the F- anion by equivalent hydrogen bonds.  相似文献   

3.
Salient features of an in-depth comparative study of infrared and Raman spectra of CCl(4) in vapour, liquid and condensed phases are presented. Wavenumbers of nu(4), nu(1)+nu(4), nu(3) and 2 nu(3) modes of CCl(4) vapour in infrared and Raman spectra are found to be in good agreement. Analysis of the vibrational spectra of liquid CCl(4) together with the spectroscopic observations on solid CCl(4) at low temperatures reveal TD-TD interaction amongst various CCl(4) isotopes in condensed states. The concept of LO-TO splitting of dipole active nu(3) and nu(1)+nu(4) Fermi doublet have been invoked to explain several features of the vibrational spectra of liquid CCl(4). There is significant strengthening of Fermi resonance interaction between nu(3) and nu(1)+nu(4) modes of CCl(4) in condensed phases relative to that in vapour phase. The Fermi resonance interaction parameter W has been found to be independent of molecular environment.  相似文献   

4.
We show that it is possible to both directly measure and directly calculate Fermi resonance couplings in benzene. The measurement method used was a particular form of two-dimensional infrared spectroscopy (2D-IR) known as doubly vibrationally enhanced four wave mixing. By using different pulse orderings, vibrational cross peaks could be measured either purely at the frequencies of the base vibrational states or split by the coupling energy. This capability is a feature currently unique to this particular form of 2D-IR and can be helpful in the decongestion of complex spectra. Five cross peaks of the ring breathing mode nu13 with a range of combination bands were observed spanning a region of 1500-4550 cm(-1). The coupling energy was measured for two dominant states of the nu13+nu16 Fermi resonance tetrad. Dephasing rates were measured in the time domain for nu13 and the two (nu13+nu16) Fermi resonance states. The electronic and mechanical vibrational anharmonic coefficients were calculated to second and third orders, respectively, giving information on relative intensities of the cross peaks and enabling the Fermi resonance states of the combination band nu13+nu16 at 3050-3100 cm(-1) to be calculated. The excellent agreement between calculated and measured spectral intensities and line shapes suggests that assignment of spectral features from ab initio calculations is both viable and practicable for this form of spectroscopy.  相似文献   

5.
Depolarisation ratios rho have been measured for the Raman spectra of solutions of composition (NH4)2 SO4*11H2O and (CH3)4NBr*29D2O. Even though the former's vibration spectrum shows clear evidence of lowered ion symmetries (presence of nu1 of SO4(2-) in the IR spectrum, IR versus R nu(max) shifts for nu3 and nu4 of SO4(2-) and nu4 of NH4+) nu1 of SO4(2-) has (apparent) rho of only 0.014, while nu2, nu3 and nu4 of SO4(2-) and nu4 (probably also nu2) of NH4+ have rho in the range 0.73-0.77; within the experimental error and base line uncertainty the latter are equal to 0.75, i.e. to rho(max) with the geometry of the optics used. For (CH3)4NBr symmetric N+-C stretching has rho 0.012; all-in-phase C-H stretching and four overtones in Fermi resonance with it have rho in the range 0.02-0.035, but the deviation from zero here is in part due to underlying or overlapping depolarised bands. The sufficiently well isolated antisymmetric CH stretching and degenerate CH bending bands again have rho in the range 0.74-0.76. These results show that the selection rules in respect of rho, which apply strictly only to isolated molecules, are for practical purposes still valid for molecules in strongly symmetry-distorting external environments in the liquid phase. More specifically: (A) During vibrations in which quasi-spherical intramolecular symmetry is retained, the externally caused aspherical component of the polarizability ellipsoid does not change aspherically to a sufficient extent for an appreciably intense anisotropic Raman band to appear. (B) During intramolecularly anti-symmetric vibrations of symmetric molecules, the portion of the externally caused distortion of the polarizability ellipsoid that fails to cancel over a whole vibration period is not large enough to give rise to an appreciably intense isotropic component of the Raman band. This means in practice rho for these Raman bands is still rho(max), even for concentrated aqueous solutions.  相似文献   

6.
Potential functions and harmonic (omega(i)) and anharmonic (nu(i)) fundamental frequencies have been calculated for 1,1-difluorocyclopropane (DFCP) and its d4 and d2 isotopomers using the program Gaussian 03. B3LYP and MP2 models were employed, each with the bases 6-311++G** and cc-pVTZ. Anharmonicity corrections Delta(i) = omega(i) - nu(i) are listed and shown to be different for symmetric and antisymmetric CH stretching modes in situations where Fermi resonance appears to be absent. The same effect is missing in C2H4, for which similar calculations were made. The quadratic force fields for DFCP have been scaled in symmetry coordinate space with 15 scale factors both to observed frequencies nu(obsd)and also to omega (obsd), where omega(obsd) = nu(obsd) + Delta. With nu(obsd) especially, different scale factors are needed for the symmetric and antisymmetric CH stretching force constants due to their differing anharmonicities. The source of the latter in the quartic and cubic force field is explored. MP2 calculations of valence interaction force constants involving the stretching of bonds on a common carbon atom are preferred to those from a B3LYP model. In either model, scaling to omega(obsd) rather than to nu(obsd) does not remove the necessity of varying scale factors for differing types of motion in the same group. Theoretical values of the five quartic centrifugal distortion constants are listed for the normal species and compared with new experimental data. The predictions are sufficiently good to be useful in fitting pure rotational transitions. A weakness is identified in the current Gaussian 03 code for the calculation of vibration-rotation quantities, and limitations are noted in the manner in which Fermi resonance is handled.  相似文献   

7.
A beam containing CH(4), Cl(2), and He is expanded into a vacuum chamber where CH(4) is prepared via infrared excitation in a combination band consisting of one quantum of excitation each in the bending and torsional modes (nu(2)+nu(4)). The reaction is initiated by fast Cl atoms generated by photolysis of Cl(2) at 355 nm, and the resulting CH(3) and HCl products are detected in a state-specific manner using resonance-enhanced multiphoton ionization (REMPI). By comparing the relative amplitudes of the action spectra of Cl+CH(4)(nu(2)+nu(4)) and Cl+CH(4)(nu(3)) reactions, we determine that the nu(2)+nu(4) mode-driven reaction is at least 15% as reactive as the nu(3) (antisymmetric stretch) mode-driven reaction. The REMPI spectrum of the CH(3) products shows no propensity toward the formation of umbrella bend mode excited methyl radical, CH(3)(nu(2)=1), which is in sharp distinction to the theoretical expectation based on adiabatic correlations between CH(4) and CH(3). The rotational distribution of HCl(v=1) products from the Cl+CH(4)(nu(2)+nu(4)) reaction is hotter than the corresponding distribution from the Cl+CH(4)(nu(3)) reaction, even though the total energies of the two reactions are the same within 4%. An explanation for this enhanced rotational excitation of the HCl product from the Cl+CH(4)(nu(2)+nu(4)) reaction is offered in terms of the projection of the bending motion of the CH(4) reagent onto the rotational motion of the HCl product. The angular distributions of the HCl(nu=0) products from the Cl+CH(4)(nu(2)+nu(4)) reaction are backward scattered, which is in qualitative agreement with theoretical calculation. Overall, nonadiabatic product vibrational correlation and mode specificity of the reaction indicate that either the bending mode or the torsional mode or both modes are strongly coupled to the reaction coordinate.  相似文献   

8.
The high-resolution infrared emission spectrum of BeF2 vapor at 1000 degrees C was rotationally analyzed with the assistance of large-scale ab initio calculations using the coupled-cluster method including single and double excitations and perturbative inclusion of triple excitations, in conjunction with correlation-consistent basis sets up to quintuple-zeta quality. The nu3 fundamental band, the nu1+nu2, nu1+nu3, and 2nu2+nu3 combination bands, and 18 hot bands were assigned. The symmetric stretching (nu1), bending (nu2), and antisymmetric stretching (nu3) mode frequencies were determined to be 769.0943(2), 342.6145(3), and 1555.0480(1) cm-1, respectively, from the band origins of the nu3, nu1+nu3, and nu1+nu2 bands. The observed vibrational term values and B rotational constants were fitted simultaneously to an effective Hamiltonian model with Fermi resonance taken into account, and deperturbed equilibrium vibrational and rotational constants were obtained for BeF2. The equilibrium rotational constant (Be) was determined to be 0.235 354(41) cm-1, and the associated equilibrium bond distance (re) is 1.3730(1) A. The results of our ab initio calculations are in remarkably good agreement with those of our experiment, and the calculated value was 1.374 A for the equilibrium bond distance (re). As in the isoelectronic CO2 molecule, the Fermi resonance in BeF2 is very strong, and the interaction constant k122 was found to be 90.20(4) cm-1.  相似文献   

9.
High resolution infrared spectra of nitric acid have been recorded in the first OH overtone region under jet-cooled conditions using a sequential IR-UV excitation method. Vibrational bands observed at 6933.39(3), 6938.75(4), and 6951.985(3) cm(-1) (origins) with relative intensities of 0.42(1), 0.38(1), and 0.20(1) are attributed to strongly mixed states involved in a Fermi resonance. A vibrational deperturbation analysis suggests that the optically bright OH overtone stretch (2nu1) at 6939.2(1) cm(-1) is coupled directly to the nu1 + 2nu2 state at 6946.4(1) cm(-1) and indirectly to the 3nu2 + nu3 + nu7 state at 6938.5(1) cm(-1). Both the identity of the zero-order states and the indirect coupling scheme are deduced from complementary CCSD(T) calculations in conjunction with second-order vibrational perturbation theory. The deperturbation analysis also yields the experimental coupling between 2nu1 and nu1 + 2nu2 of -6.9(1) cm(-1), and that between the two dark states of +5.0(1) cm(-1). The calculated vibrational energies and couplings are in near quantitative agreement with experimentally derived values except for a predicted twofold stronger coupling of 2nu1 to nu1 + 2nu2. Weaker coupling of the strongly mixed states to a dense background of vibrational states via intramolecular vibrational energy redistribution is evident from the experimental linewidths of 0.08 and 0.25 cm(-1) for the higher energy and two overlapping lower energy bands, respectively. A comprehensive rotational analysis of the higher energy band yields spectroscopic parameters and the direction of the OH overtone transition dipole moment.  相似文献   

10.
This work presents a synthesis of our results concerning line intensities and self-broadening coefficients for ClCN in the diad (nu1, 2nu 2 0). Absolute band strengths have been determined. The influence of the perturbation in these band strengths due to a Fermi resonance between the 10(0)0 and 02(0)0 levels has been analyzed.  相似文献   

11.
A series of time-resolved IR-IR double-resonance experiments have been conducted where methane molecules are excited into a selected rovibrational level of the 2nu3(F2) vibrational substate of the tetradecad and where the time evolution of the population of the various energy levels is probed by a tunable continuous wave laser. The rotational relaxation and vibrational energy transfer processes occurring in methane upon inelastic CH4-H2 and CH4-He collisions have been investigated by this technique at room temperature and at 193 K. By probing transitions in which either the lower or the upper level is the laser-excited level, rotational depopulation rates in the 2nu3(F2) substate were measured. The rate constants for CH4-H2 collisions were found to be 17.7 +/- 2.0 and 18.9 +/- 2.0 micros(-1) Torr(-1) at 296 and 193 K, respectively, and for CH(4)-He collisions they are 12.1 +/- 1.5 and 16.0 +/- 2.0 micros(-1) Torr(-1) at the same temperatures. The vibrational relaxation was investigated by probing other stretching transitions such as 2nu3(F2) - nu3, nu3 + 2nu4 - 2nu4, and nu3 + nu4 - nu4. A kinetic model, taking into account the main collisional processes connecting energy levels up to 6000 cm(-1), that has been developed to describe the various relaxation pathways allowed us to calculate the temporal evolution of populations in these levels and to simulate double-resonance signals. The different rate coefficients of the vibrational relaxation processes involved in these mixtures were determined by fitting simulated signals to the observed signals corresponding to assigned transitions. For vibration to translation energy transfer processes, hydrogen is a much more efficient collision partner than helium, nitrogen, or methane itself at 193 K as well as at room temperature.  相似文献   

12.
The OH-stretch overtone spectroscopy and dynamics of the hydroxymethyl radical, CH(2)OH, are reported in the region of the second and third overtones, which is above the thermochemical threshold to dissociation to H+CH(2)O (D(0)=9600 cm(-1)). The second overtone spectrum at 10 484 cm(-1) is obtained by double resonance IR-UV resonance enhanced multiphoton ionization (REMPI) spectroscopy via the 3p(z) electronic state. It is rotationally resolved with a linewidth of 0.4 cm(-1) and displays properties of local-mode vibration. No dissociation products are observed. The third overtone spectra of CH(2)OH and CD(2)OH are observed at approximately 13 600 cm(-1) by monitoring H-atom photofragments while scanning the excitation laser frequency. No double resonance REMPI spectrum is detected, and no D fragments are produced. The spectra of both isotope analogs can be simulated with a linewidth of 1.3 cm(-1), indicating dissociation via tunneling. By treating the tunneling as one dimensional and using the calculated imaginary frequency, the barrier to dissociation is estimated at about 15 200 cm(-1), in good agreement with theoretical estimations. The Birge-Sponer plot is linear for OH-stretch vibrations 1nu(1)-4nu(1), demonstrating behavior of a one-dimensional Morse oscillator. The anharmonicity parameter derived from the plot is similar to the values obtained for other small OH containing molecules. Isomerization to methoxy does not contribute to the predissociation signal and the mechanism appears to be direct O-H fission via tunneling. CH(2)OH presents a unique example in which the reaction coordinate is excited directly and leads to predissociation via tunneling while preserving the local-mode character of the stretch vibration.  相似文献   

13.
Irradiation of samples of solid Ne near 3.0 K containing ethene (C(2)H(4)) with vacuum ultraviolet radiation at 120 nm from synchrotron yielded new spectral lines at 3141.0, 2953.6, 2911.5, 1357.4, 677.1, 895.3, and 857.0 cm(-1). These features are assigned to alpha-CH stretching (nu(1)), CH(2) antisymmetric stretching (nu(2)), CH(2) symmetric stretching (nu(3)), CH(2)-bending (nu(5)), HCCH cis bending (nu(7)), CH(2) out-of-plane bending (nu(8)), and alpha-CH out-of-plane bending (nu(9)) modes of C(2)H(3), respectively, based on results of (13)C- and D-isotopic experiments and quantum-chemical calculations. These calculations using density-functional theory (B3LYP and PW91PW91/aug-cc-pVTZ) predict vibrational wavenumbers, IR intensities, and isotopic ratios of vinyl radical that agree satisfactorily with our experimental results.  相似文献   

14.
The rotation-vibration spectrum of DCOOD has been recorded in the carbonyl stretch (nu(3)) region. Using a standard S-reduced Watson Hamiltonian in the I(r) representation, 225 lines could be fitted to a vibrational-rotational band. A full set of molecular constants was obtained. The nu(3) band is found to be strongly perturbed in the K(a): 1<--1 and K(a): 2<--2 subband. The perturbation is attributed to a Fermi resonance with the 2nu(8) overtone band and Coriolis coupling to a combination band (nu(4)+nu(7)). The band center is determined to be 1725.1218(1) cm(-1) which is more than 10 cm(-1) shifted compared to previous studies.  相似文献   

15.
Resonance Raman spectra were obtained for 2-hydroxybenzaldehyde (OHBA) in cyclohexane solution with excitation wavelengths in resonance with the first charge-transfer/proton-transfer (CT/PT) band absorption. These spectra indicate that the Franck-Condon region photodissociation dynamics have multidimensional character with motion predominantly along the nominal C=CH in-plane bend+ring deformation modes (nu9, nu10, nu14, nu16, nu18, nu19, nu20, nu26, nu30, nu31, and nu35) accompanied by a smaller amount of motion along the nominal C=O stretch mode (nu7), the nominal C=C-C(=O) in-plane bend modes (nu33 and nu37), and the nominal ring C-O-H in-plane bend modes (nu9 and nu14). A preliminary resonance Raman intensity analysis was done, and these results for the OHBA molecule were compared to results previously reported for the 2-hydroxyacetophenone (OHAP) molecule. Several proton-transfer tautomers in the ground and excited states were predicted from the results of B3LYP/cc-PVTZ, UB3LYP/cc-PVTZ, and CASSCF/cc-PVDZ level of theory computations. The differences and similarities between the CT/PT band resonance Raman spectra and the vibrational reorganizational energies for the OHBA molecule relative to those for the OHAP molecule are briefly discussed.  相似文献   

16.
17.
Vibrational relaxation in methane-oxygen mixtures has been investigated by means of a time-resolved pump-probe technique. Methane molecules are excited into selected rotational levels by tuning the pump laser to 2nu3 lines. The time evolution in population of various vibrational levels after the pumping pulse is monitored by probing, near 3000 cm-1, stretching transitions between various polyads like 2nu3(F2) - nu3, (nu3+2nu4) - 2nu4, and (nu3+nu4) - nu4 transitions. Measurements were performed from room temperature down to 190 K. A numerical kinetic model, taking into account the main collisional processes connecting energy levels up to 6000 cm(-1), has been developed to describe the vibrational relaxation. The model allows us to reproduce the observed signals and to determine rate coefficients of relaxation processes occurring upon CH4-O2 collisions. For the vibrational energy exchange, the rate coefficient of transfer from O2 (v = 1) to CH4 is found equal to (1.32 +/- 0.09) x 10(-12) cm3 molecule-1 s(-1) at 296 K and to (1.50 +/- 0.08) x 10(-12) cm3 molecule(-1) s(-1) at 193 K.  相似文献   

18.
Quadratic quantum-chemical force fields have been determined for s-trans-1,3-butadiene using B3LYP and MP2 methods. Basis sets included 6-311++G, cc-pVTZ, and aug-cc-pVTZ. Scaling of the force fields was based on frequency data for up to 11 isotopomers, some of these data being original. A total of 18 scale factors were employed, with, in addition, an alteration to one off-diagonal force constant in the A(u) species. MP2 calculations without f functions in the basis perform badly in respect of out-of-plane bending mode frequencies. Centrifugal distortion constants and harmonic contributions to vibration-rotation constants (alphas) have been calculated. Existing experimental frequency data for all isotopomers are scrutinized, and a number of reassignments and diagnoses of Fermi resonance made, particularly in the nu(CH) region. The three types of CH bond in butadiene were characterized in terms of bond length and isolated CH stretching frequency, the latter reflecting data in the nu(CD) region. Broad agreement was achieved with earlier results from local mode studies. Differences in CH bond properties resemble similar differences in propene. A simplified sample setup for recording FT-Raman spectra of gases was applied to four isotopomers of butadiene.  相似文献   

19.
The CH-stretching overtone spectra of the methyl group in gaseous 2-CH(3) and 2-CHD(2) methylpyridines are recorded with conventional Fourier transform near-infrared spectroscopy in the Deltav(CH) = 1-4 regions and by intracavity laser photoacoustic spectroscopy in the Deltav(CH) = 5 and 6 regions. All spectra exhibit a complex structure. They are analyzed with a theoretical model that incorporates, within the adiabatic approximation, the coupling of the anharmonic CH-stretch vibrations described by Morse potentials with the quasifree internal rotation of the methyl group and with isoenergetic combination states involving the six angle deformation modes of the methyl group. The molecular vibrations are calculated in terms of redundant internal coordinates in an unambiguous canonical form. A simultaneous analysis of different isotopic derivatives is thus achieved. The Fermi resonance coupling parameters are those previously determined for toluene. The technique of diabatic rotations is used to disentangle the multiple avoided crossings occurring along the internal rotation coordinate theta in the calculated spectra, which become rapidly very dense owing to the low symmetry of the system. This simulation is successful in reproducing the experimental spectra. In addition, the transferrability of the Fermi resonance coupling parameters between two parent molecules is demonstrated.  相似文献   

20.
Selective vibrational excitation controls the competition between C-H and C-D bond cleavage in the reaction of CH(3)D with Cl, which forms either HCl + CH(2)D or DCl + CH(3). The reaction of CH(3)D molecules with the first overtone of the C-D stretch (2nu(2)) excited selectively breaks the C-D bond, producing CH(3) exclusively. In contrast, excitation of either the symmetric C-H stretch (nu(1)), the antisymmetric C-H stretch (nu(4)), or a combination of antisymmetric stretch and CH(3) umbrella bend (nu(4) + nu(3)) causes the reaction to cleave only a C-H bond to produce solely CH(2)D. Initial preparation of C-H stretching vibrations with different couplings to the reaction coordinate changes the rate of the H-atom abstraction reaction. Excitation of the symmetric C-H stretch (nu(1)) of CH(3)D accelerates the H-atom abstraction reaction 7 times more than excitation of the antisymmetric C-H stretch (nu(4)) even though the two lie within 80 cm(-1) of the same energy. Ab initio calculations and a simple theoretical model help identify the dynamics behind the observed mode selectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号