首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A generalization of the Prüfer coding of trees is given providing a natural correspondence between the set of codes of spanning trees of a graph and the set of codes of spanning trees of theextension of the graph. This correspondence prompts us to introduce and to investigate a notion ofthe spanning tree volume of a graph and provides a simple relation between the volumes of a graph and its extension (and in particular a simple relation between the spanning tree numbers of a graph and its uniform extension). These results can be used to obtain simple purely combinatorial proofs of many previous results obtained by the Matrix-tree theorem on the number of spanning trees of a graph. The results also make it possible to construct graphs with the maximal number of spanning trees in some classes of graphs.  相似文献   

2.
The splittance of an arbitrary graph is the minimum number of edges to be added or removed in order to produce a split graph (i.e. a graph whose vertex set can be partitioned into a clique and an independent set). The splittance is seen to depend only on the degree sequence of the graph, and an explicit formula for it is derived. This result allows to give a simple characterization of the degree sequences of split graphs. Worst cases for the splittance are determined for some classes of graphs (the class of all graphs, of all trees and of all planar graphs).  相似文献   

3.
Consider a set of n fixed length intervals and a set of n (larger) windows, in one-to-one correspondence with the intervals, and assume that each interval can be placed in any position within its window. If the position of each interval has been fixed, the intersection graph of such set of intervals is an interval graph. By varying the position of each interval in all possible ways, we get a family of interval graphs. In the paper we define some optimization problems related to the clique, stability, chromatic, clique cover numbers and cardinality of the minimum dominating set of the interval graphs in the family, mainly focussing on complexity aspects, bounds and solution algorithms. Some problems are proved to be NP-hard, others are solved in polynomial time on some particular classes of instances. Many practical applications can be reduced to these kind of problems, suggesting the use of Shiftable Intervals as a new interesting modeling framework.  相似文献   

4.
A graph G is said to be a set graph if it admits an acyclic orientation which is also extensional, in the sense that the out-neighborhoods of its vertices are pairwise distinct. Equivalently, a set graph is the underlying graph of the digraph representation of a hereditarily finite set.In this paper, we initiate the study of set graphs. On the one hand, we identify several necessary conditions that every set graph must satisfy. On the other hand, we show that set graphs form a rich class of graphs containing all connected claw-free graphs and all graphs with a Hamiltonian path. In the case of claw-free graphs, we provide a polynomial-time algorithm for finding an extensional acyclic orientation. Inspired by manipulations of hereditarily finite sets, we give simple proofs of two well-known results about claw-free graphs. We give a complete characterization of unicyclic set graphs, and point out two NP-complete problems closely related to the problem of recognizing set graphs. Finally, we argue that these three problems are solvable in linear time on graphs of bounded treewidth.  相似文献   

5.
Han Ren  Mo Deng 《Discrete Mathematics》2007,307(22):2654-2660
In this paper we study the cycle base structures of embedded graphs on surfaces. We first give a sufficient and necessary condition for a set of facial cycles to be contained in a minimum cycle base (or MCB in short) and then set up a 1-1 correspondence between the set of MCBs and the set of collections of nonseparating cycles which are in general positions on surfaces and are of shortest total length. This provides a way to enumerate MCBs in a graph via nonseparating cycles. In particular, some known results such as P.F. Stadler's work on Halin graphs [Minimum cycle bases of Halin graphs, J. Graph Theory 43 (2003) 150-155] and Leydold and Stadler's results on outer-planar graphs [Minimum cycle bases of outerplanar graphs, Electronic J. Combin. 5(16) (1998) 14] are concluded. As applications, the number of MCBs in some types of graphs embedded in lower surfaces (with arbitrarily high genera) is found. Finally, we present an interpolation theorem for the number of one-sided cycles contained in MCB of an embedded graph.  相似文献   

6.
We develop eigenvalue estimates for the Laplacians on discrete and metric graphs using various types of boundary conditions at the vertices of the metric graph. Via an explicit correspondence of the equilateral metric and discrete graph spectrum (also in the “exceptional” values of the metric graph corresponding to the Dirichlet spectrum) we carry over these estimates from the metric graph Laplacian to the discrete case. We apply the results to covering graphs and present examples where the covering graph Laplacians have spectral gaps.  相似文献   

7.
The center of a graph is the set of vertices with minimum eccentricity. Graphs in which all vertices are central are called self-centered graphs. In this paper almost self-centered (ASC) graphs are introduced as the graphs with exactly two non-central vertices. The block structure of these graphs is described and constructions for generating such graphs are proposed. Embeddings of arbitrary graphs into ASC graphs are studied. In particular it is shown that any graph can be embedded into an ASC graph of prescribed radius. Embeddings into ASC graphs of radius two are studied in more detail. ASC index of a graph G is introduced as the smallest number of vertices needed to add to G such that G is an induced subgraph of an ASC graph.  相似文献   

8.
The problem of when a recursive graph has a recursive k-coloring has been extensively studied by Bean, Schmerl, Kierstead, Remmel, and others. In this paper, we study the polynomial time analogue of that problem. We develop a number of negative and positive results about colorings of polynomial time graphs. For example, we show that for any recursive graph G and for any k, there is a polynomial time graph G′ whose vertex set is {0,1}* such that there is an effective degree preserving correspondence between the set of k-colorings of G and the set of k-colorings of G′ and hence there are many examples of k-colorable polynomial time graphs with no recursive k-colorings. Moreover, even though every connected 2-colorable recursive graph is recursively 2-colorable, there are connected 2-colorable polynomial time graphs which have no primitive recursive 2-coloring. We also give some sufficient conditions which will guarantee that a polynomial time graph has a polynomial time or exponential time coloring.  相似文献   

9.
The paper aims at generalizing the notion of restricted game on a communication graph, introduced by Myerson. We consider communication graphs with weighted edges, and we define arbitrary ways of partitioning any subset of a graph, which we call correspondences. A particularly useful way to partition a graph is obtained by computing the strength of the graph. The strength of a graph is a measure introduced in graph theory to evaluate the resistance of networks under attacks, and it provides a natural partition of the graph (called the Gusfield correspondence) into resistant components. We perform a general study of the inheritance of superadditivity and convexity for the restricted game associated with a given correspondence. Our main result is to give for cycle-free graphs necessary and sufficient conditions for the inheritance of convexity of the restricted game associated with the Gusfield correspondence.  相似文献   

10.
Positive graphs     
We study “positive” graphs that have a nonnegative homomorphism number into every edge-weighted graph (where the edgeweights may be negative). We conjecture that all positive graphs can be obtained by taking two copies of an arbitrary simple graph and gluing them together along an independent set of nodes. We prove the conjecture for various classes of graphs including all trees. We prove a number of properties of positive graphs, including the fact that they have a homomorphic image which has at least half the original number of nodes but in which every edge has an even number of pre-images. The results, combined with a computer program, imply that the conjecture is true for all but one graph up to 10 nodes.  相似文献   

11.
A graph F is called middle if there exists a graph G such that there is a one-to-one correspondence between the vertices of F and the vertices and edges of G such that two vertices of F are adjacent if and only if the corresponding elements (considered as subsets of the set of vertices) have a non-empty intersection.In this paper we present a linear time algorithm for the recognition of the middle graphs. The algorithm is based on a computer-oriented characterization of middle graphs. We show also how the algorithm can be generalized to recognize the middle graphs of hypergraphs.  相似文献   

12.
Define the partial join of two graphs to be some graph arising from their disjoint union by adding a set of new edges each joining a vertex of the first graph and a vertex of the second one. We characterize all colour-critical graphs being partial joins of a complete graph and an odd cycle thus completely answering a special case of a question raised by T. GALLAI in 1969.  相似文献   

13.
Jens Gustedt  Michel Morvan 《Order》1992,9(3):291-302
We investigate problems related to the set of minimal interval extensions of N-free orders. This leads us to a correspondence between this set for an arbitrary order and a certain set of its maximal N-free reductions. We also get a 1-1-correspondence between the set of linear extensions of an arbitrary order and the set of minimal interval extensions of the linegraph of that order. This has an algorithmic consequence, namely the problem of counting minimal interval extensions of an N-free order is #P-complete. Finally a characterization of all N-free orders with isomorphic root graph is given in terms of their lattice of maximal antichains; the lattices are isomorphic iff the root graphs agree.This work was supported by the PROCOPE Program. The first author is supported by the DFG.  相似文献   

14.
Let ψ be a certain set of graphs.A graph is called a minimizing graph in the set ψ if its least eigenvalue attains the minimum among all graphs in ψ.In this paper,we determine the unique minimizing graph in ψn,where ψn denotes the set of connected graphs of order n with cut vertices.  相似文献   

15.
Let V be a set of curves in the plane. The corresponding intersection graph has V as the set of vertices, and two vertices are connected by an edge if and only if the two corresponding curves intersect in the plane.It is shown that the set of intersection graphs of curves in the plane is a proper subset of the set of all undirected graphs. Furthermore, the set of intersection graphs of straight line-segments is a proper subset of the set of the intersection graphs of curves in the plane. Finally, it is shown that for every k ≥ 3, the problem of determining whether an intersection graph of straight line-segments is k-colorable is NP-complete.  相似文献   

16.
《Discrete Mathematics》2022,345(2):112688
A regular Kähler graph is a compound of two regular graphs. When adjacency operators of component graphs are commutative, we introduce equivalence relations on sets of primitive bicolored paths, which are considered as sets of trajectory-segments of magnetic fields on this Kähler graph, we study their zeta functions of Ihara type, and show a correspondence to those for ordinary regular graphs.  相似文献   

17.
Let G be a simple graph of order n and A(G) be its adjacency matrix. The nullity of a graph G, denoted by η(G), is the multiplicity of the eigenvalue zero in the spectrum of A(G). Denote by Ck and Lk the set of all connected graphs with k induced cycles and the set of line graphs of all graphs in Ck, respectively. In 1998, Sciriha [I. Sciriha, On singular line graphs of trees, Congr. Numer. 135 (1998) 73-91] show that the order of every tree whose line graph is singular is even. Then Gutman and Sciriha [I. Gutman, I. Sciriha, On the nullity of line graphs of trees, Discrete Math. 232 (2001) 35-45] show that the nullity set of L0 is {0,1}. In this paper, we investigate the nullity of graphs with cut-points and deduce some concise formulas. Then we generalize Scirihas' result, showing that the order of every graph G is even if such a graph G satisfies that G∈Ck and η(L(G))=k+1, and the nullity set of Lk is {0,1,…,k,k+1} for any given k, where L(G) denotes the line graph of the graph G.  相似文献   

18.
《Discrete Mathematics》2023,346(6):113347
We study the relation between the correspondence chromatic number, also known as the DP-chromatic number, and the Alon–Tarsi number, both upper bounds on the list chromatic number of a graph. There are many graphs with Alon–Tarsi number greater than the correspondence chromatic number. We present here a family of graphs with arbitrary Alon–Tarsi number, with correspondence chromatic number one larger.  相似文献   

19.
A simple algorithm to detect balance in signed graphs   总被引:1,自引:0,他引:1  
We develop a natural correspondence between marked graphs and balanced signed graphs, and exploit it to obtain a simple linear time algorithm by which any signed graph may be tested for balance.  相似文献   

20.
A graph is fully gated when every convex set of vertices is gated. Doignon posed the problem of characterizing fully gated graphs and in particular of deciding whether there is an efficient algorithm for their recognition. While the number of convex sets can be exponential, we establish that it suffices to examine only the convex hulls of pairs of vertices. This yields an elementary polynomial time algorithm for the recognition of fully gated graphs; however, it does not appear to lead to a simple structural characterization. In this direction, we establish that fully gated graphs are closed under a set of ‘convex’ operations, including a new operation which duplicates the vertices of a convex set (under some well-defined restrictions). This in turn establishes that every bipartite graph is an isometric subgraph of a fully gated graph, thereby severely limiting the potential for a characterization based on subgraphs. Finally, a large class of fully gated graphs is obtained using the presence of bipartite dominators, which suggests that simple convex operations cannot suffice to produce all fully gated graphs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号