首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
The cationic networks in the structure of binary and mixed-anion compounds forming in the Ln2O3-B2O3-GeO2 systems have been studied. The collection of the known cationic networks consisting of two dominating pure forms, anisotropic and isotropic, as well as of the combined anisotropic-isotropic and multivector variety of anisotropic cationic networks, was enlarged by two new types of isotropic cationic networks, namely, combined isotropic-isotropic (in the Nd4GeO8 structure) and imperfect isotropic (in the structure of borogermanates Ln14 (BO6)6 (GeO4)2O(8).  相似文献   

2.
The influence of the structures of binary compounds on the formation of ternary mixed-anion compounds—borotungstates—in ternary Ln2O3-B2O3-WO3 systems was studied. The structures of borotungstates either inherit the predominant type of cationic network from the structures of the binary compounds (anisotropic cationic networks in Ln (BO2)(WO4)) or represent a sum of equivalent anisotropic and isotropic cationic networks, forming combined cationic networks (in Ln3BWO9). In the lanthanide series, the ranges of existence of borotungstates coincide with the ranges of existence of the structure types most abundant in the binary compounds.  相似文献   

3.
Li2O-Ln2O3-B2O3 (Ln = Nd, Eu, Dy, Yb, and Y) ternary systems were studied along their inner sections. Two types of ternary compounds were found: Li3Ln2(BO3)3 (Ln = Nd, Eu, Dy, and Yb) and Li6Ln(BO3)3 (Ln = Dy and Yb). The systems were triangulated. Melts were chosen for growing single crystals of ternary compounds in multinary systems. Original Russian Text ? Sh.A. Gamidova, 2009, published in Zhurnal Neorganicheskoi Khimii, 2009, Vol. 54, No. 1, pp. 142–145.  相似文献   

4.
The structure of fine crystalline borogermanate La12GdEuB6Ge2O34 has been studied by NMR and IR spectroscopy. It has been demonstrated that this compound is isostructural to the homonuclear Ln14B6Ge2O34 compounds (Ln = Pr-Gd) and crystallizes in space group P31. The rare-earth elements have been distributed over the LnO n polyhedra in La12GdEuB6Ge2O34 by analogy with the known structures. Lanthanum can occupy positions with CN 7–10, and the symmetry of these LnO n coordination polyhedra is not higher than C 2v . In the La12GdEuB6Ge2O34 structure, the LnO n coordination polyhedra are formed by oxygen atoms of oxo groups and anions, some of the oxygen atoms being shared by LnO n polyhedra. The BO3 and GeO4 groups in the structure are also bridging, i.e., are involved in bonding of LnO n polyhedra. One of the B-O bonds in La12EuGd(BO3)6(GeO4)2O8 is elongated as compared with the B-O bond lengths in homonuclear compounds Pr14(BO3)6(GeO4)2O8 and Nd14(BO3)6(GeO4)2O8. In the La12GdEuB6Ge2O34 structure, germanium is located in isolated GeO4 tetrahedra with distorted T d symmetry. The local symmetry of lanthanum in fine crystalline La12GdEuB6Ge2O34 have been assessed using 139La NMR (B 0 = 7.04 T, room temperature). For comparison, binary lanthanum compounds with a simpler structure— LaBO3, La(BO2)3, and La2GeO5—have been used. The spectra of all compounds are rather broad (ν1/2 = 180–240 kHz). The 139La NMR spectra of the LaBO3, La(BO2)3, and La12GdEu(BO3)6(GeO4)2O8 borates show a signal at (1080 ± 40) ppm, which is absent in the spectrum of La2GeO5. The shape of the 139La NMR spectra of La12GdEu(BO3)6(GeO4)2O8 and LaBO3 is characterized by the second-order quadrupole splitting with a downfield shoulder. The similarity of these spectra points to close 139La NMR chemical shifts of La12GdEu(BO3)6(GeO4)2O8 and LaBO3. No quadrupole splitting was observed in the spectra of La(BO2)3 and La2GeO5.  相似文献   

5.
The class of oxygen-ion-conducting rare-earth pyrochlores has been considerably extended. New solid electrolytes, Ln2Ti2O7 (Ln = Dy-Lu) and Ln2Hf2O7 (Ln = Eu, Gd) pyrochlores, are intrinsic ionic conductors at elevated temperatures, as are the well known Ln2Zr2O7 (Ln = Sm-Gd) zirconates, which suggests that oxygen ion conduction in the rare-earth pyrochlore family has a general character. The thermodynamic order-disorder transitions that yield a PII cation- and anion-disordered pyrochlore phase possessing high oxygen ion conductivity occur throughout the rare-earth pyrochlore family: Ln2M2O7 (Ln = Sm-Lu; M = Ti, Zr, Hf). The composition-structure-oxygen-ionic conductivity relationship is analyzed for Ln2(M2 − x Ln x )O7 − δ (Ln = Sm-Lu; M = Ti, Zr, Hf) with x from 0 to 0.81.  相似文献   

6.
Regions of existence were determined for various types of poly- and monocrystalline solid solutions (Ln3[ScyM2−y]M3O12; {Ln3−xScx}[ScyM2−y]M3O12; Ln3[LnzScyM2−y−z] M3O12; Ln=Y, Gd; M=Ga, Al) by analyzing the diagrams rVIII−rVI (rVI are weighted mean dodecahedral and octahedral radii, respectively). We found the position of congruently melting compositions in rVIII−rVI coordinates and optimal compositions for obtaining Nd3+- and Cr3+-doped crystals. The structure of the congruently melting composition was found to be formed of “equilibrium” polyhedra, which need not be stabilized. It is shown that a congruently melting composition, which is absent in the original matrix, may be achieved by isomorphous substitutions at certain positions of the structure. The most probable mechanisms of formation of poly- and monocrystalline solid solutions with garnet structure are suggested using the calculated binodal curves of decomposition. M. V. Lomonosov Moscow Academy of Fine Chemical Technology. Translated fromZhurnal Strukturnoi Khimii, Vol. 35, No. 5, pp. 23–33, September–October, 1994. Translated by O. Kharlamova  相似文献   

7.
Three pairs of enantiopure chiral triangular Ln3 clusters, [Ln3LRRRRRR/SSSSSS3‐OH)2(H2O)2(SCN)4]?xCH3OH?yH2O ( R ‐Dy3 , Ln=Dy, x=6, y=0; S ‐Dy3 , Ln=Dy, x=6, y=1; R ‐Ho3 , Ln=Ho, x=6, y=1; S ‐Ho3 , Ln=Ho, x=6, y=1; R ‐Er3 , Ln=Er, x=6, y=0; S ‐Er3 , Ln=Er, x=6, y=1), have been successfully synthesized by a rational enantioselective synthetic strategy. The core of triangular Ln3 is bound in the central N6O3 of the macrocyclic ligand, and the coordination spheres of Ln ions are completed by four SCN? anions and two H2O molecules in axial positions of the macrocycle. The circular dichroism (CD) and vibrational circular dichroism (VCD) spectra of the enantiomers demonstrate that the chirality is successfully transferred from the ligands to the resulting Ln3 clusters. Ac susceptibility measurements reveal that single‐molecule magnet behavior occurs for both enantiopure clusters of R ‐Dy3 and S ‐Dy3 . This work is one of the few examples of the successful design of a pair of triangular Dy3 clusters showing simultaneously slow magnetic relaxation and optical activity, and this might open up new opportunities to develop novel multifunctional materials.  相似文献   

8.
Specific features of the textures (the preferred orientation of the nanometer building blocks) of the cationic and anionic components of the structures of phosphates forming in the Ln2O3-P2O5 systems (Ln = Er-Lu) have been studied. Nanostructuring upon the formation of phosphates is determined by two oppositely directed processes of fragmentation of corresponding infinite cationic and anionic frameworks to elementary blocks, LnOn polyhedra and [PO4] tetrahedra.  相似文献   

9.
A series of five l ‐di‐p‐toluoyl‐tartaric acid (l ‐DTTA) lanthanide coordination polymers, namely {[Ln4K4 L6(H2O)x]?yH2O}n, [Ln=Dy ( 1 ), x=24, y=12; Ln=Ho ( 2 ), x=23, y=12; Ln=Er ( 3 ), x=24, y=12; Ln=Yb ( 4 ), x=24, y=11; Ln=Lu ( 5 ), x=24, y=12] have been isolated by simple reactions of H2L (H2L= L ‐DTTA) with LnCl3?6 H2O at ambient temperature. X‐ray crystallographic analysis reveals that complexes 1 – 5 feature two‐dimensional (2D) network structures in which the Ln3+ ions are bridged by carboxylate groups of ligands in two unique coordinated modes. Luminescent spectra demonstrate that complex 1 realizes single‐component white‐light emission, while complexes 2 – 4 exhibit a characteristic near‐infrared (NIR) luminescence in the solid state at room temperature.  相似文献   

10.
Studying the textures (the preferred orientation of the nanometer building blocks) in the structures of neodymium tungstates shows that infinite dimeric bands {[LnOn]-[LnOn]}-{[LnOn]-[LnOn]} in a fluoritelike structure field of the Nd2O3-WO3 binary system undergo fragmentation and modification. The structural background (staggered arrangement of polyhedra) is determined by the like effects of both the basic oxide Ln2O3 (a fluorite-type structure) and the acid oxide WO3 (a ReO3-type structure).  相似文献   

11.
Glasses with composition 50Bi2O3–(50 ? x) B2O3xGeO2 (x = 0, 5, 10, 15 mol%) were prepared by conventional melting method. The thermal properties were investigated by differential thermal analysis (DTA) and the structures of the glasses were probed by Infrared, Raman and X-ray photoelectron spectroscopy (XPS). The results show that density, refractive index and optical basicity increase with the increase of GeO2. The glass transition temperature (Tg), onset crystallization temperature (Tx) and ΔT (Tx ? Tg) increase as well. The cut-off edges in ultraviolet and infrared shift to longer wavelength by the addition of GeO2. Infrared, Raman and XPS results indicate that the glass network consists of [Bi–O6] octahedron, [BO3] triangle, [BO4] tetrahedron and [GeO4] tetrahedron and borate oxide mainly exists in [BO3] units. XPS result indicates Ge4+ ions form steady [GeO4] tetrahedra units in the glass network and the number of non-bridging oxygens decreases with the addition of GeO2.  相似文献   

12.
Summary It has been found that a series of MxOy-V2O5-B2O3glasses (MxOy=Li2O, Na2O, K2O and MgO) containing 10 mol%<span style='font-size:12.0pt;font-family: Symbol;mso-bidi-font-family:Symbol'>a-Fe2O3exhibited glass-forming regions that shifted with the content of network modifier (NWM) compared to B2O3and V2O5glasses. The M?ssbauer spectra of a series of MxOy-V2O5-B2O3glasses showed increased quadrupole splitting (D) with increasing NWM content. This suggests that the coordination numbers of the V4+and V5+are fixed and that the formation number of non-bridging oxygens (NBO) is considered to increase with increasing NWM content, and with increasing formation number of NBO, the Fe3+ion site changes from VO4to BO4tetrahedra. Consequently, the quadrupole splitting increases with increasing NWM content.  相似文献   

13.
The phase equilibria in the subsolidus part of 14 binary systems of SrF2(Y, Ln)F3 type (Ln—all lanthanides except Pm and Eu) were studied at temperatures over 850°C in equilibrated and quenched specimens by the X-ray analysis method. The oxygen concentration in the specimens before and after the thermal treatment was checked. The crystallographic characteristics of phases formed in the systems i.e. nonstoichiometric phases Sr1?xLnxF2+x with fluorite type structure, phases with fluorite derived type structure, nonstochiometric phases Ln1?ySryF3?y with tysonite (LaF3) type structure are given in this paper.  相似文献   

14.
In complex oxides of REE (Ln4M3O12 (Ln = Tm, Lu; M = Zr, Hf), Ln2TiO5 (Ln = Er-Yb)) and Ho2TiO5, the following phase transitions of the order-disorder type are studied for different cooling rates: rhombohedral δ-phase-defective fluorite in Ln4M3O12 (Ln = Tm, Lu; M = Zr, Hf), pyrochlor-like phasedefective fluoride in Ln2TiO5 (Ln = Er-Yb), and hexagonal β-phase-pyrochlor in Ho2TiO5. The presence of nanostructuring phenomena typical of fluorite-like polymorphous modifications of complex oxides in the Ln2O3-MO2 (Ln = Ho-Lu; M = Ti, Zr, Hf) systems is confirmed. The conductivity of polymorphous modifications of Ln4Zr3O12 (Ln = Tm, Lu;) and Ln2TiO5 (Ln = Ho-Yb) with different thermal prehistory is studied. The comparative studies of the oxygen-ionic conductivity of fluorite- and pyrochlor-like Ln2TiO5 (Ln = Ho-Yb), pyrochlor Ho2TiO5, and β-Ho2TiO5 and also of the conductivity of fluorite-like compounds and δ-Ln4Zr3O12 (Ln = Tm, Lu) are carried out. The oxygen-ionic conductivity of complex oxides in the Ln2O3-MO2 (Ln = Er-Lu; M = Ti, Zr, Hf) system is shown to decrease in the following series: defective pyrochlor-defective fluorite-rhombohedral δ-phase ∼ hexagonal β-phase.  相似文献   

15.
Formation of five-layered Ln2–εBa3+εFe5O15–δ phases [exhibiting nanoscale ordering with layer-by-layer location of the cations in the Ln–Ba–(Ln,Ba)–(Ln,Ba)–Ba–Ln perovskite-type structure] has occurred in the Ln–Ba–Fe–O (Ln = Y, Pr, Nd, Sm, Eu, and Gd) systems at 1100°С in air. Partial substitution of iron with cobalt (Ln2–εBa3+εFe5–yCoyO15–δ, Ln = Nd, Sm, Eu) has stabilized formation of the ordered structure. The oxygen content in the complex oxides has been determined in air over a wide temperature range by means of high-temperature thermogravimetry and iodometric titration. The change in oxygen content with temperature for the phases with five-layered ordering was significantly smaller than for the disordered phases.  相似文献   

16.
Phase composition, electroconductivity, oxygen ion transport number, and microhardness of samples of Ln1 − x SrxGa0.5 − y/2Al0.5 − y/2MgyO3 − δ (Ln = La, Pr, Nd; x, y = 0.10, 0.15) synthesized by a ceramic methods are studied. Methods of x-ray diffraction analysis and scanning electron microscopy reveal the La-containing samples to be homogeneous and have a perovskite structure. Magnesium does not dissolve in Pr-and Nd-containing systems but forms an individual phase based on magnesium oxide. Apart from magnesium oxide, in these systems there form extrinsic phases, specifically, LnSrGa3O7 and an unknown phase. The electroconductivity of La1 − x SrxGa1 − y MgyO3 − δ decreases after substituting Al for Ga. Ceramic La1 − x SrxGa0.5 − y/2Al0.5 − y/2MgyO3−δ is a purely ionic conductor in the temperature interval 500 to 1000°C; NdxSrxGa0.5 − y/2Al0.5 − y/2MgyO3 − δ has predominantly ionic conduction; and the predominant type of conduction in Pr1 − x SrxGa0.5 − y/2Al0.5 − y/2MgyO3 − δ is electronic below 700–800°C, with the contribution of ionic conduction increasing at higher temperatures. Substituting Al for Ga raises the hardness of ceramics under study. Among the compositions studied, La0.85Sr0.15Ga0.45Al0.45Mg0.10O3 − δ and La0.85Sr0.15Ga0.425Al0.425Mg0.15O3 − δ exhibit a combination of electroconductivity and hardness that is optimal for application as electrolyte at reduced temperatures (600–800°C). The Pr1 − x SrxGa0.5 − y/2Al0.5 − y/2MgyO3 − δ system possesses mixed ionic-electronic conduction and high hardness, which makes it appealing for application as oxygen-penetrable membranes. Original Russian Text ? Yu.V. Danilov, A.D. Neuimin, L.A. Dunyushkina, L.A. Kuz’mina, N.S. Zybko, Z.S. Martem’yanova, A.A. Pankratov, 2007, published in Elektrokhimiya, 2007, Vol. 43, No. 1, pp. 57–65.  相似文献   

17.
The cationic networks in the structures of the initial oxides and all binary and ternary compounds forming in the Ln2O3-GeO2-P2O5 systems have been studied. In the phase diagrams of the Nd2O3-GeO2-P2O5 and Er2O3-GeO2-P2O5 systems, the regions of the structural influence of individual compounds with topologically identical cationic networks—anisotropic (A), combined (C), and isotropic (I)—are united into common areas. The A: C: I area ratio is 1: 1: 1 in the neodymium system and 1.7: 1: 3.4 in the erbium system.  相似文献   

18.
CeO2-based solid solutions with a fluorite structure are promising materials as electrolytes of medium-temperature electrochemical devices: electrolytic cells, oxygen sensors, and solid oxide fuel cells. In this work, studies are presented of the effect of the dopant cation radius and its concentration on the physico-chemical properties of the Ce1 − x Ln x O2 − δ solid solutions (x = 0–0.20; Ln = La, Nd, Sm, Eu, Gd, Dy, Ho, Er, Yb) and also of multicomponent solid solutions of Ce1 − x Ln x/2Ln′ x/2O2 − δ (x = 0–0.20; Ln = Sm, La, Gd and Ln′ = Dy, Nd, Y) and Ce1 − xy Sm x M y O2 − δ (M = Ca, Sr, Ba) obtained using the solid-phase synthesis technique. Electric properties of the samples were studied in the temperature range of 623–1173 K and in the oxygen partial pressure range of 0.01–10−22 MPa. The values of oxygen critical pressure ( pO2 * )\left( {p_{O_2 }^* } \right) are presented, at which the ionic and electron conductivity values are equal. The values were calculated on the basis of experimental dependences at 1023 K at the assumption that the ionic conductivity value is determined only by the dopant concentration and its effective ionic radius and is independent of the oxygen partial pressure.  相似文献   

19.
The phase equilibria in the Ln-Ba-Co-O (Ln=Nd, Sm) systems were systematically studied at 1100 °C in air. The homogeneity ranges and crystal structure of the solid solutions: Ln2−xBaxO3−δ (0<x≤0.1 for Ln=Nd and 0<x≤0.3 for Ln=Sm), Nd3−yBayCo2O7 (0.70≤y≤0.80), BaCo1−zSmzO3−δ (0.1≤z≤0.2) were determined by X-ray diffraction of quenched samples. The values of oxygen content (5+δ) for slowly cooled LnBaCo2O5+δ (Ln=Nd, Sm) samples were estimated as 5.73 for Ln=Nd, and 5.60 for Ln=Sm. The unit cell parameters were refined using Rietveld full-profile analysis. It was shown that NdBaCo2O5.73 possesses tetragonal structure and SmBaCo2O5.60 - orthorhombic structure. The projections of isothermal-isobaric phase diagrams for the Ln-Ba-Co-O (Ln=Nd, Sm) systems to the compositional triangle of metallic components were presented.  相似文献   

20.
XRD phase analysis of homogeneous phases and heterogeneous compositions of general formula Ln2?x MnxO3±δ (Ln = Nd, Sm, Eu; 0.90 ≤ x ≤ 1.20; Δx = 0.22) prepared by ceramic synthesis from oxides in air at 900–1400°C was used to determine the solubility boundaries for Ln2O3 oxides and maganese oxides in LnMnO3±δ. The results were represented as fragments of the phase diagrams for the Ln-Mn-O systems in air. It was assumed that the solubility of Ln2O3 oxides in LnMnO3±δ is determined by lattice defects, while that of manganese oxides, in addition to above mechanism, by the disproportionation reaction 2Mn3+ = Mn2+ + Mn4+ followed by the partial substitution of divalent magnesium for Ln3+ at cuboctahedral positions of the perovskitelike crystal lattice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号