首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The impact of Gurney flaps, of different heights and perforations, on the growth and development of a tip vortex, both along the tip and in the near field of a finite NACA 0012 wing, at Re = 1.05 × 105 was investigated by using particle image velocimetry (PIV). Wind-tunnel force balance measurements were also made to supplement the PIV results. This study is a continuation of the work of Lee and Ko (Exp Fluids 46(6):1005–1019, 2009) on the near-wake measurements behind perforated Gurney flaps. The present results show that along the tip, the overall behavior of the secondary vortices and their interaction with the primary, or tip, vortex remained basically unchanged, regardless of flap height and perforation. The peak vorticity of the tip vortex, however, increased with flap height and always exhibited a local maximum at x/c = 0.8 (from the leading edge). In the near field, the strength and structure of the near-field tip vortex were found to vary greatly with the flap height and perforation. The small flaps produced a more concentrated tip vortex with an increased circulation, while the large Gurney flaps caused a disruption of the tip vortex. The disrupted vortex can, however, be re-established by the addition of flap perforation. The larger the flap perforation the more organized the tip vortex. The Gurney flaps have the potential to serve as an alternative off-design wake vortex control device.  相似文献   

2.
The impact of Gurney flaps (GF), of different heights and perforations, on the aerodynamic and wake characteristics of a NACA 0015 airfoil equipped with a trailing-edge flap (TEF) was investigated experimentally at Re = 2.54 × 105. The addition of the Gurney flap to the TEF produced a further increase in the downward turning of the mean flow (increased aft camber), leading to a significant increase in the lift, drag, and pitching moment compared to that produced by independently deployed TEF or GF. The maximum lift increased with flap height, with the maximum lift-enhancement effectiveness exhibited at the smallest flap height. The near wake behind the joint TEF and GF became wider and had a larger velocity deficit and fluctuations compared to independent GF and TEF deployment. The Gurney flap perforation had only a minor impact on the wake and aerodynamics characteristics compared to TEF with a solid GF. The rapid rise in lift generation of the joint TEF and GF application, compared to conventional TEF deployment, could provide an improved off-design high-lift device during landing and takeoff.  相似文献   

3.
A surface grooved with microscopic riblets aligned parallel to the flow is an effective means to reduce the turbulent skin friction up to 10% compared to a smooth surface. The maximum drag reduction is found for a dimensionless rib spacing s + in the range of 15–17. For s + < 10, a linear behaviour of the drag reduction curve is predicted by viscous theory. This linear slope of the drag reduction curve is in contradiction to Schlichting’s postulation of a hydraulically smooth behaviour of small-scale roughness in a turbulent flow. This regime of evanescent dimensionless rib spacings is investigated experimentally by direct wall shear stress measurements in a fully developed channel flow. Additionally, a numerical calculation of the viscous flow over riblets was carried out to predict the drag reducing behaviour. The experimental results show a linear drag reducing behaviour down to s + = 0.3, which is in good agreement with the numerical results of the viscous simulation. The postulation of Schlichting’s hydraulically smooth regime of a rough surface was not confirmed, neither for a riblet surface nor for a surface geometry with grooves oriented perpendicular to the flow. In the latter case, the drag increases as a quadratic function of the roughness height.  相似文献   

4.
The flow around an oscillating NACA 0015 airfoil with prescheduled trailing-edge flap motion control was investigated by using particle image velocimetry (PIV). Aerodynamic load coefficients, obtained via surface pressure measurements, were also acquired to supplement the PIV results. The results demonstrate that upward flap deflections led to an improved negative peak pitching moment coefficient C m,peak, mainly as a consequence of the increased suction pressure on the lower surface of the flap. The behavior of the leading-edge vortex (LEV) was largely unaffected. Its strength was, however, reduced slightly compared to that of the uncontrolled airfoil. No trailing-edge vortex was observed. For downward flap deflection, the strength of the LEV was found to be slightly increased. A favorable increase in C l,max, as a consequence of downward flap-induced positive camber effects, accompanied by a detrimental increase in the nose-down C m,peak, due to the large pressure increase on the lower surface of the flap, was also observed.  相似文献   

5.
In this paper, wind tunnel experiments were conducted to measure the mean force coefficients and Strouhal numbers for three circular cylinders of equal diameters in an equilateral-triangular arrangement when subjected to a cross-flow. These experiments were carried out at five subcritical Reynolds numbers ranging from 1.26 × 104 to 6.08 × 104. The pressure distributions on the surface of the cylinders were measured using pressure transducers. Furthermore, the hot-wire anemometer was employed to measure the vortex shedding frequencies behind each cylinder. Six spacing ratios (l/d) varying from 1.5 to 4 were investigated. It is observed that for l/d > 2, the upstream cylinder experiences a lower mean drag coefficient compared with the downstream cylinders. The minimum values of the drag coefficient for the downstream cylinders occur at l/d = 1.5 and l/d = 2, because there is no vortex shedding from the foregoing cylinders. Also, the value of the pressure coefficient behind the upstream cylinder reduces by increasing l/d. Moreover, by decreasing the value of l/d, the Strouhal number for the upstream cylinder increases. It can be concluded that the flow pattern and aerodynamic coefficients are basically dependent on l/d; in other words, decreasing l/d results in an increase in the effects of the flow interference between the cylinders.  相似文献   

6.
A NACA 0015 airfoil with and without a Gurney flap was studied in a wind tunnel with Re c = 2.0 × 105 in order to examine the evolving flow structure of the wake through time-resolved PIV and to correlate this structure with time-averaged measurements of the lift coefficient. The Gurney flap, a tab of small length (1–4% of the airfoil chord) that protrudes perpendicular to the chord at the trailing edge, yields a significant and relatively constant lift increment through the linear range of the C L versus α curve. Two distinct vortex shedding modes were found to exist and interact in the wake downstream of flapped airfoils. The dominant mode resembles a Kàrmàn vortex street shedding behind an asymmetric bluff body. The second mode, which was caused by the intermittent shedding of fluid recirculating in the cavity upstream of the flap, becomes more coherent with increasing angle of attack. For a 4% Gurney flap at α = 8°, the first and second modes corresponded with Strouhal numbers based on flap height of 0.18 and 0.13. Comparison of flow around ‘filled’ and ‘open’ flap configurations suggested that the second shedding mode was responsible for a significant portion of the overall lift increment.  相似文献   

7.
Tomographic and time resolved PIV measurements were performed to examine the 3D flow topology and the flow dynamic above the upper surface of a low-aspect ratio cylinder at Re ≈ 1 ×  105. This generic experiment is of fundamental interest because it represents flow features which are relevant to many applications such as laminar separation bubbles and turbulent reattachment. At Re  ≈ 1 × 105, laminar separation bubbles arise on the side of the cylinder. Furthermore, on the top of the cylinder a separation with reattachment is of major interest. The tomographic PIV measurement, which allows to determine all three velocity components in a volume instantaneously, was applied to examine the flow topology and interaction between the boundary layer and wake structures on the top of the finite cylinder. In the instantaneous flow fields the tip vortices and the recirculation region becomes visible. However, it is also observed that the flow is quite unsteady due to the large separation occurring on the top of the cylinder. In order to study the temporal behaviour of the separation, time resolved PIV was applied. This technique allows capturing the dynamic processes in detail. The development of vortices in the separated shear layer is observed and in addition regions with different dominant frequencies are identified.  相似文献   

8.
The flow around a circular cylinder with a cross-section variation is experimentally investigated. Particle Image Velocimetry (PIV) is used to scrutinize the interaction of the cylinder’s wall with its near wake. The Reynolds number based on the cylinder’s diameter and freestream velocity is 80 × 103, corresponding to the upper subcritical flow regime. At a forcing Strouhal number of St f = 0.02, the maximum vorticity level around the cylinder is reduced by more than 50% as compared to its uncontrolled value. The topology of the bulk flow confined between the primary vortical structure and the cylinder surface is modified resulting in substantial drag reduction.  相似文献   

9.
High-speed tomographic PIV was used to investigate the coalescence of drops placed on a liquid/liquid interface; the coalescence of a single drop and of a drop in the presence of an adjacent drop (side-by-side drops) was investigated. The viscosity ratio between the drop and surrounding fluids was 0.14, the Ohnesorge number (Oh = μd/(ρdσD)1/2) was 0.011, and Bond numbers (Bo = (ρ d  − ρ s )gD 2/σ) were 3.1–7.5. Evolving volumetric velocity fields of the full coalescence process allowed for quantification of the velocity scales occurring over different time scales. For both single and side-by-side drops, the coalescence initiates with an off-axis film rupture and film retraction speeds an order of magnitude larger than the collapse speed of the drop fluid. This is followed by the formation and propagation of an outward surface wave along the coalescing interface with wavelength of approximately 2D. For side-by-side drops, the collapse of the first drop is asymmetric due to the presence of the second drop and associated interface deformation. Overall, tomographic PIV provides insight into the flow physics and inherent three-dimensionalities in the coalescence process that would not be achievable with flow visualization or planar PIV only.  相似文献   

10.
Flap-bounding is a common flight style in small birds in which flapping phases alternate with flexed-wing bounds. Body lift is predicted to be essential to making this flight style an aerodynamically attractive flight strategy. To elucidate the contributions of the body and tail to lift and drag during the flexed-wing bound phase, we used particle image velocimetry (PIV) and measured properties of the wake of zebra finch (Taeniopygia guttata, = 5), flying at 6–10 m s−1 in a variable speed wind tunnel as well as flow around taxidermically prepared specimens (= 4) mounted on a sting instrumented with force transducers. For the specimens, we varied air velocity from 2 to 12 m s−1 and body angle from −15° to 50°. The wake of bounding birds and mounted specimens consisted of a pair of counter-rotating vortices shed into the wake from the tail, with induced downwash in the sagittal plane and upwash in parasagittal planes lateral to the bird. This wake structure was present even when the tail was entirely removed. We observed good agreement between force measures derived from PIV and force transducers over the range of body angles typically used by zebra finch during forward flight. Body lift:drag (L:D) ratios averaged 1.4 in live birds and varied between 1 and 1.5 in specimens at body angles from 10° to 30°. Peak (L:D) ratio was the same in live birds and specimens (1.5) and was exhibited in specimens at body angles of 15° or 20°, consistent with the lower end of body angles utilized during bounds. Increasing flight velocity in live birds caused a decrease in C L and C D from maximum values of 1.19 and 0.95 during flight at 6 m s−1 to minimum values of 0.70 and 0.54 during flight at 10 m s−1. Consistent with delta-wing theory as applied to birds with a graduated-tail shape, trimming the tail to 0 and 50% of normal length reduced L:D ratios and extending tail length to 150% of normal increased L:D ratio. As downward induced velocity is present in the sagittal plane during upstroke of flapping flight, we hypothesize that body lift is produced during flapping phases. Future efforts to model the mechanics of intermittent flight should take into account that flap-bounding birds may support up to 20% of their weight even with their wings fully flexed.  相似文献   

11.
Vortex shedding from a fixed rigid square cylinder in a cross flow was manipulated by perturbing the cylinder surface using piezo-ceramic actuators, which were activated by a feedback hot-wire signal via a proportional–integral–derivative (PID) controller. The manipulated flow was measured at a Reynolds number (Re) of 7,400 using particle image velocimetry (PIV), laser-induced fluorescence (LIF) flow visualisation, two-component laser Doppler anemometry (LDA), hot wires and load cells. It is observed that the vortex circulation, fluctuating streamwise velocity, lift and drag coefficients and mean drag coefficient may decrease by 71%, 40%, 51%, 42% and 20%, respectively, compared with the unperturbed flow, if the perturbation velocity of the cylinder surface is anti-phased with the flow lateral velocity associated with vortex shedding. On the other hand, these quantities may increase by 152%, 90%, 60%, 67% and 37%, respectively, given in-phased cylinder surface perturbation and vortex shedding. Similar effects are obtained at Re=3,200 and 9,500, respectively. The relationship between the perturbation and flow modification is examined, which provides insight into the physics behind the observation.  相似文献   

12.
Instantaneous planar pressure determination from PIV in turbulent flow   总被引:2,自引:0,他引:2  
This paper deals with the determination of instantaneous planar pressure fields from velocity data obtained by particle image velocimetry (PIV) in turbulent flow. The operating principles of pressure determination using a Eulerian or a Lagrangian approach are described together with theoretical considerations on its expected performance. These considerations are verified by a performance assessment on a synthetic flow field. Based on these results, guidelines regarding the temporal and spatial resolution required are proposed. The interrogation window size needs to be 5 times smaller than the flow structures and the acquisition frequency needs to be 10 times higher than the corresponding flow frequency (e.g. Eulerian time scales for the Eulerian approach). To further assess the experimental viability of the pressure evaluation methods, stereoscopic PIV and tomographic PIV experiments on a square cylinder flow (Re D  = 9,500) were performed, employing surface pressure data for validation. The experimental results were found to support the proposed guidelines.  相似文献   

13.
The validation of fluid–structure interaction solvers is difficult since there is a lack of experimental data. Therefore, in this work an aeroelastic experiment is presented. The focus is on the temporal coupling between fluid and structure dynamics. Issues in the spatial coupling are eliminated by using a rigid wing. The wing, with a harmonically actuated 0.2c trailing edge flap, has a degree of freedom in the plunge (vertical) direction. The wing has a chord of 0.5 m and is suspended with springs. The wing motion is constrained by a vertical rail system.For simplicity attached flow is desired and therefore the set angle of attack is α=0°. The Reynolds number is approximately Re=700 000 and the flap deflects over a range of about ±2°. The damped natural frequency of the structure expressed as a reduced frequency is about k=0.194 and measurements are performed for reduced flap frequencies ranging from k=0.1 to k=0.3. Displacements and time dependent aerodynamic forces are measured and for k=0.198 2-D PIV measurements are performed. The planar PIV measurements are used to intrinsically determine the unsteady loads using Noca׳s method.As expected the aeroelastic problem shows similarities with a viscously damped mass–damper–spring, meaning the maximum excursion of the wing is found near the system eigenfrequency. The lift is dominated by the flap motion and the effective angle of attack due to the motion introduces phase shifts of the lift signal with respect to the flap phase angle.The experiment has been set up and executed with the necessary precision, but small ambiguities are found in the lift and drag disqualifying the data for validation. Nevertheless the data set provides a clear insight into typical loads and motions and can be used for comparative studies. It can also be used to (re)design future experiments to improve the quality of the data to the desired level of accuracy for validation.  相似文献   

14.
Stereoscopic and tomographic PIV of a pitching plate   总被引:1,自引:0,他引:1  
This paper applies particle image velocimetry (PIV) to a simplified, canonical, pitch-hold-return problem of a pitching plate in order to gain some understanding of how three dimensionality develops in such flows. Data from a progression of PIV studies, from stereoscopic PIV yielding three-component, two-dimensional (3C-2D) data to tomographic PIV yielding three-component, three-dimensional (3C-3D) data are presented thus providing progressively more detailed information. A comparison of results is made between the two techniques. The PIV study is performed in a water tunnel facility with cross-sectional area 500 × 500 mm, and involves a full-span (nominally two-dimensional) plate, suspended between a wall end boundary condition and a free surface, pitching at a dimensionless pitch rate of K c  = 0.93 in flow at Re = 7,500. Results demonstrate the existence of spanwise flows in both the leading edge and trailing edge vortices, but with strong directionality in the leading edge vortex towards the wall end boundary condition. Observations of instantaneous flow patterns suggest also the existence of three-dimensional coherent vortex filament structures in the outer regions of the leading edge vortex.  相似文献   

15.
This study quantifies degradation of polyethylene oxide (PEO) and polyacrylamide (PAM) polymer solutions in large diameter (2.72 cm) turbulent pipe flow at Reynolds numbers to 3 × 105 and shear rates greater than 105 1/s. The present results support a universal scaling law for polymer chain scission reported by Vanapalli et al. (2006) that predicts the maximum chain drag force to be proportional to Re 3/2, validating this scaling law at higher Reynolds numbers than prior studies. Use of this scaling gives estimated backbone bond strengths from PEO and PAM of 3.2 and 3.8 nN, respectively. Additionally, with the use of synthetic seawater as a solvent the onset of drag reduction occurred at higher shear rates relative to the pure water solvent solutions, but had little influence on the extent of degradation at higher shear rates. These results are significant for large diameter pipe flow applications that use polymers to reduce drag.  相似文献   

16.
The vortex flow characteristics of a sharp-edged delta wing with an apex strake was investigated through the visualization and particle image velocimetry (PIV) measurement of the wing-leeward flow region, and the wing-surface pressure measurement. The wing model was a flat-plate, and 65°-sweep cropped-delta wing with sharp leading edges. The apex strake was also a flat-plate wing with a cropped-delta shape of 65°/90° sweep, and it can change its incidence angle. The flow Reynolds number was 2.2 × 105 for the flow visualization and 8.2 × 105 for the PIV and wing-surface pressure measurements. The physics of the vortex flow in the wing-leeward flow region and the suction-pressure distribution on the wing upper-surface were interrelated and analyzed. The effect of a positive (negative) strake incidence-angle was the upward movement of the strake and wing vortices away from (downward movement of the strake and wing vortices toward) the wing-upper surface and the delayed (enhanced) coiling interaction between them. This change of vortex flow characteristics projected directly on the suction pressure distribution on the wing upper-surface.  相似文献   

17.
The control of the unsteady flow structure formed behind a cylinder placed horizontally in shallow water was analyzed experimentally using bare cylinder and cylinders with cavities having square and rectangular geometries, respectively. Reynolds number, Froude number and water height had been chosen as 5000, 0.27 and 90 mm, respectively and also these parameters were kept constant for all experiments. To consider the influence of height (h), the cylinder level was located at various heights from h: 0 mm to 60 mm. Furthermore, cavity angle (a) had been selected from 0°, 80°, 85°, 90° and 95° to consider influence of cavity angle on flow. With the help of Particle Image Velocimetry (PIV), average velocity vectors were measured in two dimensions at many points simultaneously in a planar flow area. The results uncovered that large negative counter was observed at h: 37.5 mm in bare cylinder as well as cylinders having square and rectangular cavities at h: 45 mm. Also, no negative counter was observed for cylinders having rectangular cavity at h: 0 mm and a: 90° and 95° due to the bottom effect. Due to surface effects, a foci point was formed in all cylinders where close to the surface and close to the base. Two foci points and a saddle point were seen as they moved away from the surface for all cylinders. Also, the smallest vortex region was observed for cylinders having rectangular cavity at h: 37.5 mm and a: 90° and 95° in whole cylinders. Also, the highest drag coefficient (Cd) value was obtained for cylinder having square cavity at h: 52.5 mm and a: 80° while the highest drag coefficient value was obtained for cylinder having rectangular cavity at h: 37.5 mm and a: 95°.  相似文献   

18.
Flow field analysis of a turbulent boundary layer over a riblet surface   总被引:9,自引:0,他引:9  
The near-wall flow structures of a turbulent boundary layer over a riblet surface with semi-circular grooves were investigated experimentally for the cases of drag decreasing (s +=25.2) and drag increasing (s +=40.6). One thousand instantaneous velocity fields over riblets were measured using the velocity field measurement technique and compared with those above a smooth flat plate. The field of view was 6.75 × 6.75 mm2 in physical dimension, containing two grooves. Those instantaneous velocity fields were ensemble averaged to get turbulent statistics including turbulent intensities and turbulent kinetic energy. To see the global flow structure qualitatively, flow visualization was also carried out using the synchronized smoke-wire technique under the same experimental conditions. For the case of drag decreasing (s +=25.2), most of the streamwise vortices stay above the riblets, interacting with the riblet tips frequently. The riblet tips impede the spanwise movement of the streamwise vortices and induce secondary vortices. The normalized rms velocity fluctuations and turbulent kinetic energy are small near the riblet surface, compared with those over a smooth flat plate. Inside the riblet valleys, these are sufficiently small that the increased wetted surface area of the riblets can be compensated. In addition, in the outer region (y + > 30), these values are almost equal to or slightly smaller than those for the smooth plate. For the case of drag increasing (s +=40.6), however, most of the streamwise vortices stay inside the riblet valleys and contact directly with the riblet surface. The high-speed down-wash flow penetrating into the riblet valley interacts actively with the wetted riblet surface and increases the skin friction. The rms velocity fluctuations and turbulent kinetic energy have larger values compared with those over a smooth flat plate. Received: 24 March 1999/Accepted: 10 March 2000  相似文献   

19.
In the present work, the objective is to attempt to induce parallel vortex shedding at a moderately high Reynolds number (=1.578 × 104) by using the cylinder end suction method, and measure the associated aerodynamic parameters.We first measured the aerodynamic parameters of a single circular cylinder without end suction, and showed that the quantities measured are in good agreement with equivalent data in the published literature. Next, by using different amount of end suction which resulted in increasing the cylinder end velocity by 1%, 2% and 2.5%, we were able to show that the above corresponded to the situation of under suction, optimal suction and over suction, respectively. With optimal suction, we demonstrated that the end suction method works at Re = 1.578 × 104. The shape of the primary vortex shed became straighter than when there is no end suction, and parameters like cylinder surface pressure distribution, drag force per unit span, as well as vortex shedding frequency all showed negligible spanwise variation. Further careful analyses showed that when compared to the naturally existing curved vortex shedding, with parallel vortex shedding the mid-span drag per unit span became slightly smaller, but the drag averaged over the cylinder span became slightly larger. For cylinder surface pressure, it was found that cylinder end effects mainly influenced the surface pressure in the angular ranges −180°  β < −60° and 60° < β  180°. Without end suction, the cylinder surface pressure in the above ranges was found to increase (become less negative) slightly with |z/d|, but such increase disappeared when optimal end suction was applied, and the cylinder surface pressure distribution became spanwise location independent. As for the vortex shedding frequency (Strouhal number), although the Strouhal number showed spanwise variation when there is no end suction and negligible spanwise variation when optimal suction was applied, the difference between the spanwise averaged Strouhal number was quite negligible. With under suction, the spanwise dependence of various aerodynamic parameters existed, but was found to be not as significant as when no end suction was applied at all. With over suction, the flow situation was found to be practically no change from the optimal suction situation.  相似文献   

20.
The passage of solid spheres through a liquid–liquid interface was experimentally investigated using a high-speed video and PIV (particle image velocimetry) system. Experiments were conducted in a square Plexiglas column of 0.1 m. The Newtonian Emkarox (HV45 50 and 65% wt) aqueous solutions were employed for the dense phase, while different silicone oils of different viscosity ranging from 10 to 100 mPa s were used as light phase. Experimental results quantitatively reveal the effect of the sphere’s size, interfacial tension and viscosity of both phases on the retaining time and the height of the liquid entrained behind the sphere. These data were combined with our previous results concerning the passage of a rising bubble through a liquid–liquid interface in order to propose a general relationship for the interface breakthrough for the wide range of Mo 1/Mo 2 ∈ [2 × 10−5–5 × 104] and Re 1/Re 2 ∈ [2 × 10−3–5 × 102].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号