首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chiral (iminophosphoranyl)ferrocenes (1 and 2) are highly efficient ligands to achieve high diastereoselectivity (up to 95/5 dr in favor of the cis-isomer) as well as enantioselectivity (up to 99% ee) in Ru-catalyzed asymmetric cyclopropanation of various olefins. Reversal in diastereoselectivity is found as a function of metal-to-ligand ratio in the reaction of styrene.  相似文献   

2.
A novel formal [3+2] cycloaddition of cyclopropylacetals and aldehydes was developed, and the resulting trisubstituted tetrahydrofurans display three new chiral centers formed with highly diastereoselectivity. This method is stereocomplementary to most previously reported cycloadditions of malonate diesters, relies on the transient generation of cyclopropyl oxocarbenium ions, proceeds under mild conditions, and is based on the concept of temporary activation of an otherwise inert protecting group.  相似文献   

3.
A catalytic formal [5+2] cycloaddition approach to the diastereoselective synthesis of azepino[1,2‐a]indoles is reported. The reaction presumably proceeds through a Lewis acid catalyzed formal [2+2] cycloaddition of an alkene with an N‐indolyl alkylidene β‐amide ester to form a donor–acceptor cyclobutane intermediate, which subsequently undergoes an intramolecular ring‐opening cyclization. Azepine products are formed in up to 92 % yield with high degrees of diastereoselectivity (up to 34:1 d.r.).  相似文献   

4.
"Formal" and standard Ru(II)-catalyzed [2 + 2 + 2] cycloaddition of 1,6-diynes 1 to alkenes gave bicyclic 1,3-cyclohexadienes in relatively good yields. The neutral Ru(II) catalyst was formed in situ by mixing equimolecular amounts of [Cp*Ru(CH3CN)3]PF6 and Et4NCl. Two isomeric bicyclic 1,3-cyclohexadienes 3 and 8 were obtained depending on the cyclic or acyclic nature of the alkene partner. Mechanistic studies on the Ru catalytic cycle revealed a clue for this difference: (a) when acyclic alkenes were used, linear coupling of 1,6-diynes with alkenes was observed giving 1,3,5-trienes 6 as the only initial reaction products, which after a thermal disrotatory 6e-pi electrocyclization led to the final 1,3-cyclohexadienes 3 as probed by NMR studies. This cascade process behaved as a formal Ru-catalyzed [2 + 2 + 2] cycloaddition. (b) With cyclic alkenes, the standard Ru-catalyzed [2 + 2 + 2] cycloaddition occurred, giving the bicyclic 1,3-cyclohexadienes 8 as reaction products. A complete catalytic cycle for the formal and standard Ru-catalyzed [2 + 2 + 2] cycloaddition of acetylene and cyclic and acyclic alkenes with the Cp*RuCl fragment has been proposed and discussed based on DFT/B3LYP calculations. The most likely mechanism for these processes would involve the formation of ruthenacycloheptadiene intermediates XXIII or XXVII depending on the alkene nature. From these complexes, two alternatives could be envisioned: (a) a reductive elimination in the case of cyclic alkenes 7 and (b) a beta-elimination followed by reductive elimination to give 1,3,5-hexatrienes 6 in the case of acyclic alkenes. Final 6e-pi electrocyclization of 6 gave 1,3-cyclohexadienes 3.  相似文献   

5.
Young IS  Kerr MA 《Organic letters》2004,6(1):139-141
[reaction: see text] The reaction of nitrones, formed in situ by reaction of hydroxylamines with aldehydes, with 1,1-cyclopropanediesters results in the formation of tetrahydro-1,2-oxazines via a homo 3 + 2 dipolar cycloaddition. This three-component coupling allows for the formation of a diverse array of cycloadducts with excellent diastereoselectivity (>95%) and yields (66-96%). The procedure has been used in the two-step preparation of congeners of the FR900482 skeleton.  相似文献   

6.
3-Nitro-2-trichloro(trifluoro)methyl-2H-chromenes undergo a formal [4+2] cycloaddition reaction to cyclohexanone and pinacolone enamines, producing chromeno[3,4-c][1,2]benzoxazin-6-oxides with high diastereoselectivity and in good yields. In addition, some novel 2,3,4-trisubstituted chromanes were obtained. The stereochemistry of the products was established based on a 2D NOESY experiment and an X-ray diffraction study.  相似文献   

7.
The first example of a transition metal-catalyzed hetero-[5 + 2] cycloaddition reaction is described. Use of cyclopropyl imines as five-atom components, an alkyne as a two-carbon component, and a Rh(I) catalyst enables a new route to dihydroazepines. This new hetero-[5 + 2] cycloaddition works well with aldimines, ketimines, and with substituted cyclopropanes and affords the desired dihydroazepines in excellent yields as single regioisomers. Use of serial imine formation/aza-[5 + 2] cycloaddition generates the desired dihydroazepines in one operation from three commercially available starting materials. The reaction has been scaled to give gram quantities of dihydroazepine.  相似文献   

8.
Ru-catalyzed [2 + 2] cycloadditions between norbornadiene and alkynyl halides were found to occur in moderate to good yields (32-89%). The presence of the halide moiety greatly enhances the reactivity of the alkyne component in the cycloaddition and can be transformed into a variety of products that are difficult or impossible to obtain via direct cycloaddition. [reaction: see text]  相似文献   

9.
Total synthesis of ceratopicanol ( 1 ) was achieved with a tandem cycloaddition reaction of allenyl diazo compound 6 via a trimethylenemethane (TMM) diyl intermediate. The TMM diyl mediated [2+3] cycloaddition reaction furnished the consecutive quaternary carbon centers and showed an unusual diastereoselectivity.  相似文献   

10.
Varela JA  Castedo L  Saá C 《Organic letters》2003,5(16):2841-2844
[reaction: see text] A new "formal" Ru-catalyzed [4+2+2] cycloaddition of 1,6-diynes to 1,3-dienes giving conjugated 1,3,5-cyclooctatrienes and vinylcyclohexadienes is described. This formal cycloaddition is really a tandem process, the Ru(II)-catalyzed formation of (Z)-tetraenes or vinyl-(Z)-trienes followed by a pure thermal conrotatory 8 pi- or disrotatory 6 pi-electrocyclization. The proposed mechanism allows the differences in product ratio to be explained in terms of steric and stereochemical considerations.  相似文献   

11.
Hetero Diels-Alder (HDA) cycloaddition of chiral 1-p-tolylsulfinyl-1,3-pentadiene with benzyl nitrosoformate, under mild conditions, yields 2H-1,2-oxazine 3 with complete regioselectivity and pi-facial diastereoselectivity. Sequential osmylation and protection of the resulting glycol gives the oxazine 5 which is directly transformed into enantiomerically pure 1,4,5-trideoxy-1,4-imino-L-ribitol 8 by reduction under Pd/C.  相似文献   

12.
The first total synthesis of (+)-frondosin A was accomplished in 19 longest linear and 21 total steps from commercially available materials. The key features of the synthesis include a Ru-catalyzed [5+2] cycloaddition, a Claisen rearrangement, and a ring expansion to construct the core of the frondosin A in a diastereoselective and regioselective fashion. This is the first application of a Ru-catalyzed [5+2] cycloaddition in the total synthesis of a natural product. Through this synthesis, the absolute configuration of (+)-frondosin A was established.  相似文献   

13.
An efficient and mild Ni(ClO(4))(2)-catalyzed [3+2] cycloaddition of N-tosylaziridines and aldehydes via C-C bond cleavage was developed. The cycloaddition reaction proceeds with high diastereoselectivity and regioselectivity leading to highly substituted 1,3-oxazolidines. Notably, this novel reaction can be easily expanded to gram level scale and the thermal conditions cannot achieve the same transformation.  相似文献   

14.
Cyclopropanecarboxaldehyde ( 1 a ), cyclopropyl methyl ketone ( 1 b ), and cyclopropyl phenyl ketone ( 1 c ) were reacted with [Ni(cod)2] (cod=1,5‐cyclooctadiene) and PBu3 at 100 °C to give η2‐enonenickel complexes ( 2 a – c ). In the presence of PCy3 (Cy=cyclohexyl), 1 a and 1 b reacted with [Ni(cod)2] to give the corresponding μ‐η21‐enonenickel complexes ( 3 a , 3 b ). However, the reaction of 1 c under the same reaction conditions gave a mixture of 3 c and cyclopentane derivatives ( 4 c , 4 c′ ), that is, a [3+2] cycloaddition product of 1 c with (E)‐1‐phenylbut‐2‐en‐1‐one, an isomer of 1 c . In the presence of a catalytic amount of [Ni(cod)2] and PCy3, [3+2] homo‐cycloaddition proceeded to give a mixture of 4 c (76 %) and 4 c′ (17 %). At room temperature, a possible intermediate, 6 c , was observed and isolated by reprecipitation at ?20 °C. In the presence of 1,3‐bis(2,6‐diisopropylphenyl)imidazol‐2‐ylidene (IPr), both 1 a and 1 c rapidly underwent oxidative addition to nickel(0) to give the corresponding six‐membered oxa‐nickelacycles ( 6 ai , 6 ci ). On the other hand, 1 b reacted with nickel(0) to give the corresponding μ‐η21‐enonenickel complex ( 3 bi ). The molecular structures of 6 ai and 6 ci were confirmed by X‐ray crystallography. The molecular structure of 6 ai shows a dimeric η1‐nickelenolate structure. However, the molecular structure of 6 ci shows a monomeric η1‐nickelenolate structure, and the nickel(II) 14‐electron center is regarded as having “an unusual T‐shaped planar” coordination geometry. The insertion of enones into monomeric η1‐nickelenolate complexes 6 c and 6 ci occurred at room temperature to generate η3‐oxa‐allylnickel complexes ( 8 , 9 ), whereas insertion into dimeric η1‐nickelenolate complex 6 ai did not take place. The diastereoselectivity of the insertion of an enone into 6 c having PCy3 as a ligand differs from that into 6 ci having IPr as a ligand. In addition, the stereochemistry of η3‐oxa‐allylnickel complexes having IPr as a ligand is retained during reductive elimination to yield the corresponding [3+2] cycloaddition product, which is consistent with the diastereoselectivity observed in Ni0/IPr‐catalyzed [3+2] cycloaddition reactions of cyclopropyl ketones with enones. In contrast, reductive elimination from the η3‐oxa‐allylnickel having PCy3 as a ligand proceeds with inversion of stereochemistry. This is probably due to rapid isomerization between syn and anti isomers prior to reductive elimination.  相似文献   

15.
The synthesis of triazoles via the three-component coupling reaction of unactivated terminal alkynes, allyl carbonate, and trimethylsiyl azide under the Pd(0)-Cu(I) bimetallic catalyst is developed. The reaction most probably proceeds through the formation of a pi-allylpalladium azide complex and a copper-acetylide followed by a successive [3 + 2] cycloaddition. The deallylation of the resulting allyltriazoles proceeds very easily by the Ru-catalyzed isomerization followed by the ozonolysis of the resulting propenyltriazoles to give the triazoles in high yields.  相似文献   

16.
Wender PA  Zhang L 《Organic letters》2000,2(15):2323-2326
A concise asymmetric total synthesis of (+)-aphanamol I is described, based on the transition metal catalyzed [5 + 2] allenyl-vinylcyclopropane cycloaddition. The key cycloaddition precursor is convergently assembled from (R)-(+)-limonene and cyclopropane diester through a novel decarboxylative dehydration reaction. The metal-catalyzed [5 + 2] cycloaddition of this precursor proceeds with complete chemo, endo/exo, and diastereoselectivity in 93% yield, representing an effective general route to bicyclo[5.3.0]decane derivatives.  相似文献   

17.
A vinyl cyclopropane rearrangement embedded in an iridium-catalyzed hydrogen borrowing reaction enabled the formation of substituted stereo-defined cyclopentanes from Ph* methyl ketone and cyclopropyl alcohols. Mechanistic studies provide evidence for the ring-expansion reaction being the result of a cascade based on oxidation of the cyclopropyl alcohols, followed by aldol condensation with the pentamethyl phenyl-substituted ketone to form an enone containing the vinyl cyclopropane. Subsequent single electron transfer (SET) to this system initiates a rearrangement, and the catalytic cycle is completed by reduction of the new enone. This process allows for the efficient formation of diversely substituted cyclopentanes as well as the construction of complex bicyclic carbon skeletons containing up to four contiguous stereocentres, all with high diastereoselectivity.  相似文献   

18.
Craig R. Berry 《Tetrahedron》2004,60(35):7629-7636
An inverse electron-demand aza-[4+2] cycloaddition reaction of allenamides with 1-azadiene is described here. Effects of solvents on diastereoselectivity along with synthetic scopes and mechanistic insights are illustrated. Despite some synthetic limitations, this aza-[4+2] cycloaddition does provide a useful template for the synthesis of aza-glycoside related heterocycles.  相似文献   

19.
A class of alkenyl propargyl acetates, RCH(OAc)C≡CC(CH(3))═CH(2) (5), are found to undergo [4 + 1] cycloaddition with CO (1 atm) in the presence of [RhCl(CO)(2)](2) in refluxing 1,2-dichloroethane to give cyclopentenones (6) in good yields. It has been demonstrated that, when the R group of 5 is a phenyl group bearing o-electron-withdrawing substituents, up to 10:1 diastereoselectivity and 96% yield can be achieved for the [4 + 1] cycloaddition. This process provides a convenient method to construct highly functionalized cyclopentenones that are useful in organic synthesis.  相似文献   

20.
meso-Tetrakis(p-tolyl)porphyrinatoruthenium(II) carbonyl, [Ru(II)(TTP)(CO)], can effect intermolecular sulfonium and ammonium ylide formation by catalytic decomposition of diazo compounds such as ethyl diazoacetate (EDA) in the presence of allyl sulfides and amines. Exclusive formation of [2,3]-sigmatropic rearrangement products (70-80% yields) was observed without [1,2]-rearrangement products being detected. The Ru-catalyzed reaction of EDA with disubstituted allyl sulfides such as crotyl sulfide produced an equimolar mixture of anti- and syn-2-(ethylthio)-3-methyl-4-pentenoic acid ethyl ester. The analogous "EDA + N,N-dimethylcrotylamine" reaction afforded a mixture of anti- and syn-2-(N,N-dimethylamino)-3-methyl-4-pentenoic acid ethyl esters with a diastereoselectivity of 3:1. The observed catalytic activity of [Ru(II)(TTP)(CO)] for the ylide [2,3]-sigmatropic rearrangement is comparable to the reported examples involving [Rh(2)(CH(3)CO(2))(4)] and [Cu(acac)(2)] as catalyst. Similarly, cyclic sulfonium and ammonium ylides can be produced by intramolecular reaction of a diazo group tethered to allyl sulfides and amines under the [Ru(II)(TTP)(CO)]-catalyzed reaction conditions. The subsequent [2,3]-sigmatropic rearrangement of the cyclic ylides furnished 2-allyl-substituted sulfur and nitrogen heterocycles in good yields (>90%). By employing [Ru(II)(TTP)(CO)] as catalyst, the cyclic ammonium ylide [2,3]-sigmatropic rearrangement reaction was successfully applied for the total synthesis of (+/-)-platynecine starting from cis-2-butenediol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号