首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 872 毫秒
1.
《中国化学快报》2022,33(12):5001-5012
Graphene oxide (GO) has been widely used in the modification of membranes due to its excellent properties, i.e., huge specific surface area, good electrical conductivity, good hydrophilicity and various functional groups. The addition of GO in membranes were proved to exhibit improved properties in water permeability, molecular selectivity, membrane fouling mitigation and contaminants decomposition. Recently, the development of laminated GO in membranes achieved both high selectivity and high water permeability, conquering the limitations of conventional polymeric or inorganic membranes. By analyzing the separation mechanisms and the performance of GO composite membranes, this review systematically summarized the applications of GO composite membranes in three highlighted areas of environmental fields: desalination, gas separation and wastewater treatment, with challenges discussed faced with GO composite membranes.  相似文献   

2.
Isotactic polypropylene(iPP) and graphene oxide(GO), dispersed in dibutyl phthalate(DBP) and dioctyl phthalate(DOP), were blended to prepare organic-inorganic-blended microfiltration membranes using thermally induced phase separation(TIPS). These membranes were characterized by scanning electron microscopy(SEM), Fourier transform infrared spectroscopy(FTIR), contact angle measurements, mechanical properties, permeation tests, and porosity measurements. The morphology studied by SEM shows larger pores of the GO-blended membranes when compared to those of unmodified iPP membranes. Composite iPP/GO membranes achieve better performance in terms of water fluxes and pure water fluxes recovery ratio due to the hydrophilic nature of GO when compared with the pure iPP membranes. The addition of GO increases the permeability and the tensile strength by 352.98% and 123%, respectively, and also decreases the contact angle from 125° to 52.33°. We concluded that the composite membrane with 0.3% GO has the best antifouling ability of the membranes tested because it has the highest values of mean pore radius, porosity, and water flux observed in this study.  相似文献   

3.
Cardo polyetherketone (PEK-C) composite membranes were prepared by casting glutaraldehyde (GA) cross-linked sulfonated cardo polyetherketone (SPEK-C) or silicotungstic acid (STA) filled SPEK-C and poly(vinyl alcohol) (PVA) blending onto a PEK-C substrate. The compatibility between the active layer and PEK-C substrate is improved by immersing the PEK-C substrate in a GA cross-linked sodium alginate (NaAlg) solution and using water–dimethyl sulfoxide (DMSO) as a co-solvent for preparing the STA-PVA-SPEK-C/GA active layer. The pervaporation (PV) dehydration of acetic acid shows that permeation flux decreased and separation factor increased with increasing GA content in the homogeneous membranes. The permeation flux achieved a minimum and the separation factor a maximum when the GA content increased to a certain amount. Thereafter the permeation flux increased and the separation factor decreased with further increasing the GA content. The PV performance of the composite membranes is superior to that of the homogeneous membranes when the feed water content is below 25 wt%. The permeation activation energy of the composite membranes is lower than that of the homogeneous membranes in the PV dehydration of 10 wt% water in acetic acid. The STA-PVA-SPEK-C-GA/PEK-C composite membrane using water–DMSO as co-solvent has an excellent separation performance with a flux of 592 g m−2 h−1 and a separation factor of 91.2 at a feed water content of 10 wt% at 50 °C.  相似文献   

4.
使用均质和复合壳聚糖膜对二氧六环-水和丙酮-水溶液的渗透汽化分离性能进行了研究。结果显示,该膜对两种混合物的分离有很高的选择性和渗透速率。考察料液组成和温度对均质膜分离的影响,随温度升高,分离系数与通量同时增加。从渗透速率与温度的Arrhenius关系求得总的和各组分的表现渗透活化能,复合膜在保持高选择性的同时,渗透速率大幅度提高。  相似文献   

5.
Two-dimensional (2D) materials, led by graphene, have emerged as nano-building blocks to develop high-performance membranes. The atom-level thickness of nanosheets makes a membrane as thin as possible, thereby minimizing the transport resistance and maximizing the permeation flux. Meanwhile, the sieving channels can be precisely manipulated within sub-nanometer size for molecular separation, such as gas separation. For instance, graphene oxide (GO) channels with an interlayer height of about 0.4 nm assembled by external forces exhibited excellent H2/CO2 sieving performance compared to commercial membranes. Cross-linking was also employed to fabricate ultrathin (< 20 nm) GO-facilitated transport membranes for efficient CO2 capture. A borate-crosslinked membrane exhibited a high CO2 permeance of 650 GPU (gas permeation unit), and a CO2/CH4 selectivity of 75, which is currently the best performance reported for GO-based composite membranes. The CO2-facilitated transport membrane with piperazine as the carrier also exhibited excellent separation performance under simulated flue gas conditions with CO2 permeance of 1020 GPU and CO2/N2 selectivity as high as 680. In addition, metal-organic frameworks (MOFs) with layered structures, if successfully exfoliated, can serve as diverse sources for MOF nanosheets that can be fabricated into high-performance membranes. It is challenging to maintain the structural and morphological integrity of nanosheets. Poly[Zn2(benzimidazole)4] (Zn2(bim)4) was firstly exfoliated into 1-nm-thick nanosheets and assembled into ultrathin membranes possessing both high permeance and excellent molecular sieving properties for H2/CO2 separation. Interestingly, reversed thermo-switchable molecular sieving was also demonstrated in membranes composed of 2D MOF nanosheets. Besides, researchers employed layered double hydroxides (LDHs) to prepare molecular-sieving membranes via in situ growth, and the as-prepared membranes showed a remarkable selectivity of ~80 for H2-CH4 mixture. They concluded that the amount of CO2 in the precursor solution contributed to LDH membranes with various preferred orientations and thicknesses. Apart from these 2D materials, MXenes also show great potential in selective gas permeation. Lamellar stacked MXene membranes with aligned and regular sub-nanometer channels exhibited excellent gas separation performance. Moreover, our ultrathin (20 nm) MXene nanofilms showed outstanding molecular sieving property for the preferential transport of H2, with H2 permeance as high as 1584 GPU and H2/CO2 selectivity of 27. The originally H2-selective MXene membranes could be transformed into membranes selectively permeating CO2 by chemical tuning of the MXene nanochannels. This paper briefly reviews the latest groundbreaking studies in 2D-material membranes for gas separation, with a focus on sub-nanometer 2D channels, exfoliation of 2D nanosheets with structural integrity, and tunable gas transport property. Challenges, in terms of the mass production of 2D nanosheets, scale-up of lab-level membranes and a thorough understanding of the transport mechanism, and the potential of 2D-material membranes for wide implementation are briefly discussed.  相似文献   

6.
Metal-organic framework (MOF) membranes have attracted considerable attention because of their striking advantages in small-molecule separation. The preparation of an integrated MOF membrane is still a major challenge. Depositing a uniform seed layer on a support for secondary growth is a main route to obtaining an integrated MOF membrane. A novel seeding method to prepare HKUST-1 (known as Cu(3)(btc)(2)) membranes on porous α-alumina supports is reported. The in situ production of the seed layer was realized in step-by-step fashion via the coordination of H(3)btc and Cu(2+) on an α-alumina support. The formation process of the seed layer was observed by ultraviolet-visible absorption spectroscopy and atomic force microscopy. An integrated HKUST-1 membrane could be synthesized by the secondary hydrothermal growth on the seeded support. The gas permeation performance of the membrane was evaluated.  相似文献   

7.
Metal–organic frameworks (MOFs) are made up of metal centers and organic binders with larger surface area and distinct pore structures. Particularly significant advancement in MOF membranes has been achieved in three different directions: preparation of MOF membranes with larger surface area, improving the membrane performance by surface modification, and its usage with added features. However, its significance has not been completely known and concluded yet. MOF membranes are used in a variety of membrane-based separation like gas permeation, nanofiltration, pervaporation, membrane distillation, etc. This research aims to synthesize MOFs (ZIF-8 and ZIF-67) and MOF membranes (ZIF-8/PVDF and ZIF-67/PVDF) and used them in the pervaporative separation of the methanol/water mixture. MOFs and MOF membranes were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction, and thermogravimetry analysis. Methanol/water mixtures were be used to study the performance of the prepared membranes. A study on the process parameters such as temperature (40, 45, 50, and 55°C), feed pressure (4, 8, 12, and 16 psi), and feed composition (10%, 20%, 30%, and 40% of water) was carried out to examine the effect of each process parameters for pure membrane. In contrast, Taguchi screening design was used to screen the most influential process variable. The optimized conditions based on Taguchi screening method were 55°C, 12 psi, and 40 %vol of water in feed. The obtained total flux of 425 L/m2h was observed for M3 membrane. As feed temperature increased, the total flux of all three membranes was increased.  相似文献   

8.
Three different types of blend membranes based on chitosan and polyacrylic acid were prepared from homogeneous polymer solution and their performance on the pervaporation separation of water-ethanol mixtures was investigated. It was found that all membranes are highly water-selective. The temperature dependence of membrane permselectivity for the feed solutions of higher water content (>30 wt%) was unusual in that both permeability and separation factor increased with increase in temperature. This phenomenon might be explained from the aspect of activation energy and suggested that the sorption contribution to activation energy of permeation should not always be ignored when strong interaction occurs in the pervaporation membrane system.A comparison of pervaporation performance between composite and homogeneous membranes was also studied. Typical pervaporation results at 30°C for a 95 wt% ethanol aqueous solution were: for the homogeneous membrane, permeation flux = 33 g/m2 h, separation factor = 2216; and for the composite membrane, permeation flux = 132 g/m2 h, separation factor = 1008. A transport model consisting of dense layer and porous substrate in series was developed to describe the effect of porous substrate on pervaporation performance.  相似文献   

9.
以聚乙二醇(PEG-400)为还原剂,Ag NO3为前驱体,采用浸渍-还原法合成氧化石墨烯-Ag纳米粒子(GO-Ag NP)复合物,再通过共混法制备氧化石墨烯-Ag纳米粒子/聚酰亚胺(GO-Ag NP/PI)混合基质膜,用于苯/环己烷混合物的渗透汽化分离。使用透射电子显微镜、红外吸收光谱、拉曼光谱、热失重以及X射线光电子能谱等分析表征GO-Ag NP复合物、GO-Ag NP/PI混合基质膜的形貌和结构;探讨了Ag掺杂量对GO-Ag NP复合物的结构以及GO-Ag NP/PI混合基质膜的结构和渗透汽化性能的影响。结果发现,Ag+被还原形成Ag NP的同时,GO失去了部分含氧官能团;Ag掺杂破坏了GO的结构,使其无序度增加,但改善了GO-Ag NP复合物在混合基质膜中的分散性,提升了GO-Ag NP/PI混合基质膜的苯/环己烷渗透汽化性能。然而过量的Ag掺杂将使GO片层上产生Ag粒子团聚,从而降低混合基质膜的渗透汽化性能。当Ag掺杂量为15%时,GO-Ag NP/PI混合基质膜渗透汽化性能最佳,渗透通量为1 404 g·m-2·h-1,分离因子可达36.2。  相似文献   

10.
Chitosan (CS) with good hydrophilicity and charged property was used to modify graphene oxide (GO), the obtained GO‐CS was used as a novel modifier to fabricate thin film composite forward osmosis (FO) membranes. The results revealed that the amino groups on CS reacted with carboxyl groups on GO, and the lamellar structure of the GO nanosheets was peeled off by CS, resulting in the reducing of their thicknesses. The GO‐CS improved the hydrophilicity of polyethersulfone (PES) substrate, and their contact angles decreased to 64° with the addition of GO‐CS in the substrate. GO‐CS also increased the porosity of the substrate and surface roughness of FO membrane, thereby optimizing the water flux and reverse salt flux of FO membrane. The average water flux of the FO membrane reached the optimal flux of 21.34 L/(m2 h) when GO‐CS addition was 0.5 wt%, and further addition of GO‐CS to the substrate would decrease the water flux of FO membrane, and the reverse salt flux also decreased to the lowest value of 2.26 g/(m2 h). However, the salt rejection of the membrane increased from 91.4% to 95.1% when GO‐CS addition increased from 0.5 to 1.0 wt% under FO mode using 1 mol/L sodium chloride (NaCl) solution as draw solution (DS). In addition, high osmotic pressure favored water permeation, and at the same concentration of DS, magnesium chloride (MgCl2) exhibited better properties than NaCl. These results all suggested that GO‐CS was a good modifier to fabricate FO membrane, and MgCl2 was a good DS candidate.  相似文献   

11.
Perfluorosulfonic acid/Polysulfone(PFSA/PSf) hollow fiber composite membranes have been prepared by dip-coating method using PSf ultrafiltration (UF) membrane as substrate with recovered PFSA. The composite membranes were applied to the pervaporation separation of 95% ethanol (EtOH)/H2O mixture. SEM images show that the thickness of the PFSA skin layer of the composite membranes is about 2 μm, much thinner than those of other PFSA composite membranes revealed in the literatures. Effects of annealing temperature, coating solution concentration and counter-ions of PFSA on the pervaporation performances of the composite membranes were investigated. The total flux decreases and separation factor increases with the increase of annealing temperature. The highest permeation flux of 3230 g m?2 h?1 and a separation factor of 5.4 is obtained for the composite membrane annealed at 80°C. The lowest permeation flux of 396 g m?2 h?1 and a separation factor of 27.7 is obtained for the composite membrane annealed at 160°C. The permeation performances of the PFSA/PSf composite membrane are evidently influenced by the counter-ions of PFSA. The flux sequence of the PFSA/PSf composite membranes with different counter-ions is H+>Li+>Ca2+>Mg2+>Na+>K+>Ba2+>Fe3+>Al3+, and the separation factor sequence is H+<Li+<Al3+<Na+<Mg2+<Ca2+<K+<Ba2+<Fe3+. The apparent activation energy ΔE app values of the composite membranes with different counter-ions were calculated by Arrhenius law. The sequence of ΔE app values for the membranes with monovalent counter-ions is Li+>Na+>K+. There are very little variations of ΔE app values between the composite membranes with three divalent counter-ions (Mg2+, Ca2+ and Ba2+), and the ΔE app values of the composite membranes with two trivalent counter-ions (Fe3+ and Al3+) are relatively high.  相似文献   

12.
《先进技术聚合物》2018,29(2):941-950
Due to the narrow layer spacing, graphene oxide (GO) composite membrane usually exhibits a relatively low water flux in the process of wastewater treatment. In this study, GO was reduced to reduced graphene oxide through a bio‐inspired method, which was functionalized modified by poly‐dopamine (PDA). Then a series of PDA/reduced graphene oxide sheet films were prepared by vacuum filtration on the surface of cellulose acetate membrane (under the pressure of −0.1 MPa). The result indicated that the novel membranes had an excellent stability owing to the cross‐link of PDA. In addition, the hydrophilicity of membrane was increased significantly after PDA modification, which presented a superior water flux than pure GO composite membrane. More importantly, as‐prepared membranes were successfully applied for the removal of dyes (including Congo red, methylene blue, and rhodamine B) and heavy mental ion (Cu(II)) from simulated wastewater. This work might provide a new method for preparation and application of GO composite membranes.  相似文献   

13.
Mixed-matrix membranes (MMMs) were prepared by combinations of two different kinds of porous fillers [metal-organic frameworks (MOFs) HKUST-1 and ZIF-8, and zeolite silicalite-1] and polysulfone. In the search for filler synergy, the MMMs were applied to the separation of CO(2)/N(2), CO(2)/CH(4), O(2)/N(2), and H(2)/CH(4) mixtures and we found important selectivity improvements with the HKUST-1-silicalite-1 system (CO(2)/CH(4) and CO(2)/N(2) separation factors of 22.4 and 38.0 with CO(2) permeabilities of 8.9 and 8.4 Barrer, respectively).  相似文献   

14.
Graphene oxide (GO) has triggered significant attention as a new type of self‐assembly membrane material. However, the low filtration flux and unstable performance of GO membrane limit its practical application. Hence, in this work, layered double hydroxides (LDHs), as a 2D material with double‐layer channel structure and positive electricity, were self‐assembled with GO at weight ratio of 7:3 by electrostatic interaction. Then, the GO/LDH hybrids combined with polydopamine (PDA) to obtain stable and high‐flux GO‐based membranes through vacuum filtration and the structure and morphology of as‐prepared samples were characterized by FT‐IR, XRD, XPS, and SEM. Furthermore, the separation performance and surface electronegativity of membranes were tested via pure water flux, rejection efficiency, recycle experiments, and zeta potential. Results revealed that the stability and flux of composite membrane were enhanced significantly compared with neat GO‐based membrane. Further, the dye rejection rate of methylene blue (MB) is higher than Congo red (CR) and rhodamine B (Rh B) and reached to 99.8%.  相似文献   

15.
Metal organic frameworks(MOFs) are a kind of promising materials in many applications,while the fast and controllable synthesis of MOFs is still challenging.Here,taking HKUST-1 as illustration,a microplasma electrochemistry(MIPEC) strategy was developed to accelerate the synthesis process of MOFs with micro-plasma acting as cathode.Treating the HKUST-1 precursor solution with micro-plasma cathode could not only transfer the electrons into the solution leading to the deprotonation effect,but also generate radical species to trigger and accelerate the nucleation and growth of MOFs at the plasmaliquid interface.Thus,uniform and nanosize MOFs could be prepared within minutes.The obtained MOFs show similar excellent uranium adsorption properties compared with those obtained by other method,with a highly adsorption capability of uranium with 550 mg/g in minutes.The novel MIPEC strategy developed in this work provides an alternative for controllable synthesis of MOFs,and especially has potential application in accelerating traditional organic synthesis.  相似文献   

16.
Synthesis and characterization of silicalite-1/carbon-graphite membranes   总被引:2,自引:0,他引:2  
Silicalite-1/carbon-graphite composite membranes have been prepared using a standard hydrothermal synthesis method and characterized by XRD, SEM, TGA, BET and permeation experiments. Single gas permeation fluxes and binary mixtures separation and selectivity data are reported for methane, ethane and propane using the composite membranes. Carbon-graphite oxidized for 4 h prior to membrane preparation had the most promising separation properties. The permeation fluxes for the binary mixtures reflect that of the single component flux ratios. At 20 degrees C the membranes show high separation selectivity toward lighter component in binary mixtures. Single gas permeances for methane and ethane were found to decrease with increasing temperatures while that of propane fluctuates.  相似文献   

17.
A graphene oxide (GO) membrane is supported on a ceramic hollow fiber prepared by a vacuum suction method. This GO membrane exhibited excellent water permeation for dimethyl carbonate/water mixtures through a pervaporation process. At 25 °C and 2.6 wt % feed water content, the permeate water content reached 95.2 wt % with a high permeation flux (1702 g m?2 h?1).  相似文献   

18.
Tunable gating polymeric nanostructured membrane with excellent water permeability and precise molecular separation is highly advantageous for smart nanofiltration application. Polymeric nanostructures such as microgels with functionalizable cross-linkable moieties can be an excellent choice to construct membranes with a thin separation layer, functionality, and tunable transport properties. In the present work, we prepared switchable anti(bio)fouling membranes using zwitterionically functionalized antibacterial thermoresponsive aqueous core-shell microgels with a thin separation layer for controlled filtration and separation applications. The microgels were synthesized using a one-step graft copolymerization of poly(N-isopropylacrylamide) and polyethyleneimine (PEI) followed by zwitterionization of free amine groups of PEI chains with 1,3-propane sultone. Microgel synthesis and zwitterionization were confirmed by spectroscopic and elemntal analysis. The obtained microgels were thoroughly characterized to analyze their thermoresponsive behavior, morphology, charge, and antibacterial properties. After that, characterizations were performed to elucidate the surface properties, water permeation, rejection, and flux recovery of the microgel membranes prepared by suction filtration over a track-etched support. It was observed that zwitterionic membrane provides better hydrophilicity, lower bovine serum albumin (BSA) adsorption, and desirable antimicrobial activity. The pure water permeability was directly related to the microgel layer thickness, applied pressure, and temperature of the feed solution. The novel nanostructured membrane leads to an excellent water permeance with a high gating ratio, high flux recovery rate with low irreversible fouling, better rejection for various dyes, and foulant. Most importantly, the long-term performance of the membrane is appreciable as the microgel layer remains intact and provides excellent separation up to a longer period. Owing to easy preparation and well control over thickness, the zwitterionic microgel membranes constitute unique and interactive membranes for various pressure-driven separation and purification applications.  相似文献   

19.
以聚乙二醇(PEG-400)为还原剂,AgNO3为前驱体,采用浸渍-还原法合成氧化石墨烯-Ag纳米粒子(GO-AgNP)复合物,再通过共混法制备氧化石墨烯-Ag纳米粒子/聚酰亚胺(GO-AgNP/PI)混合基质膜,用于苯/环己烷混合物的渗透汽化分离。使用透射电子显微镜、红外吸收光谱、拉曼光谱、热失重以及X射线光电子能谱等分析表征GO-AgNP复合物、GO-AgNP/PI混合基质膜的形貌和结构;探讨了Ag掺杂量对GO-AgNP复合物的结构以及GO-AgNP/PI混合基质膜的结构和渗透汽化性能的影响。结果发现,Ag+被还原形成AgNP的同时,GO失去了部分含氧官能团;Ag掺杂破坏了GO的结构,使其无序度增加,但改善了GO-AgNP复合物在混合基质膜中的分散性,提升了GO-AgNP/PI混合基质膜的苯/环己烷渗透汽化性能。然而过量的Ag掺杂将使GO片层上产生Ag粒子团聚,从而降低混合基质膜的渗透汽化性能。当Ag掺杂量为15%时,GO-AgNP/PI混合基质膜渗透汽化性能最佳,渗透通量为1 404 g·m-2·h-1,分离因子可达36.2。  相似文献   

20.
Hybrid membranes were prepared using poly(vinyl alcohol) (PVA) and tetraethylorthosilicate (TEOS) via hydrolysis followed by condensation. The obtained membranes were characterized by Fourier transform infrared spectroscopy, wide-angle X-ray diffraction and differential scanning calorimetry. The remarkable decrease in degree of swelling was observed with increasing TEOS content in membranes and is attributed to the formation of hydrogen and covalent bonds in the membrane matrix. The pervaporation performance of these membranes for the separation of water–acetic acid mixtures was investigated in terms of feed concentration and the content of TEOS used as crosslinking agent. The membrane containing 1:2 mass ratio of PVA and TEOS gave the highest separation selectivity of 1116 with a flux of 3.33 × 10−2 kg/m2 h at 30 °C for 10 mass% of water in the feed. Except for membrane M-1, the observed values of water flux are close to the values of total flux in the investigated composition range, signifying that the developed membranes are highly water selective. From the temperature dependence of diffusion and permeation values, the Arrhenius apparent activation parameters have been estimated. The resulting activation energy values, obtained for water permeation being lower than those of acetic acid permeation values, suggest that the membranes have higher separation efficiency. The activation energy values calculated for total permeation and water permeation are close to each other for all the membranes except membrane M-1, signifying that coupled-transport is minimal as due to higher selective nature of membranes. Further, the activation energy values for permeation of water and diffusion of water are almost equivalent, suggesting that both diffusion and permeation contribute almost equally to the pervaporation process. The negative heat of sorption values (ΔHs) for water in all the membranes suggests the Langmuir's mode of sorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号