首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 101 毫秒
1.
Gold catalysts with loadings ranging from 0.5 to 7.0 wt% on a ZnO/Al2O3 support were prepared by the deposition–precipitation method (Au/ZnO/Al2O3) with ammonium bicarbonate as the precipitation agent and were evaluated for performance in CO oxidation. These catalysts were characterized by inductively coupled plasma-atom emission spectrometry, temperature programmed reduction, and scanning transmission electron microscopy. The catalytic activity for CO oxidation was measured using a flow reactor under atmospheric pressure. Catalytic activity was found to be strongly dependent on the reduction property of oxygen adsorbed on the gold surface, which related to gold particle size. Higher catalytic activity was found when the gold particles had an average diameter of 3–5 nm; in this range, gold catalysts were more active than the Pt/ZnO/Al2O3 catalyst in CO oxidation. Au/ZnO/Al2O3 catalyst with small amount of ZnO is more active than Au/Al2O3 catalyst due to higher dispersion of gold particles.  相似文献   

2.
The effects of H2 and H2 + O2 gas mixtures of varying composition on the state of the surface of the Pt/MoO3 model catalyst prepared by vacuum deposition of platinum on oxidized molybdenum foil were investigated by X-ray photoelectron spectroscopy (XPS) at room temperature and a pressure of 5–150 Torr. For samples with a large Pt/Mo ratio, the XP spectrum of large platinum particles showed that the effect of hydrogen-containing mixtures on the catalyst was accompanied by the reduction of molybdenum oxide. This effect results from the activation of molecular hydrogen due to the dissociation on platinum particles and subsequent spill-over of hydrogen atoms on the support. The effect was not observed at low platinum contents in the model catalyst (i.e., for small Pt particles). It is assumed for the catalyst that the loss of its hydrogen-activating ability is a consequence of the formation of platinum hydride. Possible participation of platinum hydride as intermediate in hydrogen oxidation to H2O2 is discussed.  相似文献   

3.
Selective CO oxidation in a mixture simulating the methanol steam reforming product with an air admixture was studied over Ru/Al2O3 catalysts in a quasi-adiabatic reactor. On-line monitoring of the gas temperature in the catalyst bed and of the residual CO concentration at different reaction conditions made it possible to observe the ignition and quenching of the catalyst surface, including transitional regimes. A sharp decrease in the residual CO concentration takes place when the reaction passes to the ignition regime. The evolution of the temperature distribution in the catalyst bed in the ignition regime and the specific features of the steady-state and transitional regimes are considered, including the effect of the sample history. In selective CO oxidation and in H2 oxidation in the absence of CO, the catalyst is deactivated slowly because of ruthenium oxidation. In both reactions, the deactivated catalyst can be reactivated by short-term treatment with hydrogen. A 0.1% Ru/Al2O3 catalyst is suggested. In the surface ignition regime, this catalyst can reduce the residual CO concentration from 0.8 vol % to 10–15 ppm at O2/CO = 1 even in the presence of H2O and CO2 (up to ~20 vol %) at a volumetric flow rate of ~100 1 (g Cat)?1 h?1, which is one magnitude higher than the flow rates reported for this process in the literature.  相似文献   

4.
A kinetic model that fits the experimental data is studied on the basis of the most probable mechanism of ethylene oxidation by hydrogen peroxide over a biomimetic catalyst, perfluorinated iron (III) tetraphenylporphyrin, deposited on aluminum oxide (per-FTPhPFe3+OH/Al2O3). Effective rate constants for the catalase and oxygenase reactions and their effective activation energies are found.  相似文献   

5.
The temperature of soot oxidation and efficiency of Ce0.5Zr0.5O2 catalyst depends on its morphology, which determines the area of intergranular contact between the solid substrate and the catalyst. The temperature-programmed reduction in hydrogen to 1000°C and oxidation at 500°C (redox cycles) cause the mobility of oxygen in oxide to be enhanced and decrease the temperature of soot combustion. Oxidation of soot in the air flow on the Ce0.5Zr0.5O2 catalyst result in its activation. Reuse of the catalyst decreases the temperature of soot oxidation.  相似文献   

6.
The oxidative dehydrogenation of propane on a supported vanadium catalyst was studied (the support was a complex oxide system consisting of a ceria–zirconia solid solution deposited on γ-Al2O3 (CeZrO/γ-Al2O3)). A comparative analysis of the properties of the support and the catalyst prepared on its basis was performed. The support and catalyst were characterized by the BET method, scanning electron microscopy, X-ray diffraction analysis, and Raman spectroscopy. The catalytic properties of the catalyst and support were studied in propane oxidation at 450 and 500°C with pulse feeding of the reagent. The effect of propane on the support was found to improve the oxidative properties of the latter. This behavior of the support is related to the preparation procedure, which leads to the formation on its surface of the crystalline phase of the ceria–zirconia solid solution and amorphous ZrO2 and Al2O3 phases and/or their solid solution. Similar processes occur with the catalyst support during the oxidative dehydrogenation, giving rise to additional active centers (CeVO4).  相似文献   

7.
Adsorption microcalorimetry has been employed to study the interaction of ethylene with the reduced and oxidized Pt-Ag/SiO2catalysts with different Ag contents to elucidate the modified effect of Ag towards the hydrocarbon processing on platinum catalysts. In addition, microcalorimetric adsorption of H2, O2, CO and FTIR of CO adsorption were conducted to investigate the influence of Ag on the surface structure of Pt catalyst. It is found from the microcalorimetric results of H2and O2adsorption that the addition of Ag to Pt/SiO2leads to the enrichment of Ag on the catalyst surface which decreases the size of Pt surface ensembles of Pt-Ag/SiO2catalysts. The microcalorimetry and FTIR of CO adsorption indicates that there still exist sites for linear and bridged CO adsorption on the surface of platinum catalysts simultaneously although Ag was incorporated into Pt/SiO2. The ethylene microcalorimetric results show that the decrease of ensemble size of Pt surface sites suppresses the formation of dissociative species (ethylidyne) upon the chemisorption of C2H4on Pt-Ag/SiO2. The differential heat vs. uptake plots for C2H4adsorption on the oxygen-preadsorbed Pt/SiO2and Pt-Ag/SiO2catalysts suggest that the incorporation of Ag to Pt/SiO2could decrease the ability for the oxidation of C2H4.  相似文献   

8.
It was established by X-ray diffraction, TPR, and EPR that microemulsion (m.e.) synthesis yields the binary oxides ZrO2(m.e.) and CeO2(m.e.) and the mixed oxide Zr0.5Ce0.5O2(m.e.) in the form of a tetragonal, cubic, and pseudocubic phase, respectively, having crystallite sizes of 5–6 nm. The bond energy of surface oxygen in the (m.e.) samples is lower than in their analogues prepared by pyrolysis. Hydrogen oxidation on the oxides under study occurs at higher temperatures than CO oxidation. ZrO2(m.e.) and CeO2(m.e.) are active in O2 formation during NO + O2 adsorption, while CeO2 is active during CO + O2 adsorption, too. However, its amount here is one-half to one-third its amount in the pyrolysis-prepared samples, signifying a reduced number of active sites, which are Zr4+ and Ce4+ coordinatively unsaturated cations and Me4+-O2− pairs. O2 radical anions are stabilized in the coordination sphere of Zr4+ coordinatively unsaturated cations via ionic bonding, and in the sphere of Ce4+ cations, via covalent bonding. Ionic bonds are stronger than ionic-covalent bonds and do not depend on the ZrO2 phase composition. Zr0.5Ce0.5O2 is inactive in these reactions because of the strong interaction of Zr and Ce cations. It is suggested that Ce(4 + β)+ coordinatively unsaturated cations exist on its surface, and their acid strength is lower than that of Zr4+ and Ce4+ cations in ZrO2 and CeO2, according to the order ZrO2 > CeO2 ≥ Zr0.5Ce0.5O2. Neither TPR nor adsorption of probe molecules revealed Zr cations on the surface of the mixed oxide.  相似文献   

9.
Gold-palladium catalysts supported on cerium oxide were synthesized with the double complex salts. X-ray photoelectron spectroscopy (XPS) and other physicochemical methods (TEM, TPR) were used to demonstrate that synthesis of highly active palladium catalysts requires the oxidative treatment stimulating the formation of a catalytically active surface solid solution Pd x Ce1?x O2, which is responsible for the lowtemperature activity (LTA) in the reaction CO + O2. In the case of gold catalysts, active sites for the lowtemperature oxidation of CO are represented by gold nanoparticles and its cationic interface species. Simultaneous deposition of two metals increases the catalyst LTA due to interaction of both gold and palladium with the support surface to form a Pd1?x CexO2 solid solution and cationic interface species of palladium and gold on the boundary of Pd-Au alloy particles anchored on the solid solution surface.  相似文献   

10.
Trimetallic NiMoW/Al2O3 catalyst was prepared using mixed H4SiMo3W9O40 heteropoly acid of Keggin structure and nickel citrate. Bimetallic NiMo/Al2O3 and NiW/Al2O3 catalysts based on H4SiMo12O40 and H4SiW12O40, respectively, were synthesized as reference samples. The use of mixed H4SiMo3W9O40 heteropoly acid as an oxide precursor allows the tungsten sulfidation degree and the degree of promotion of active phase particles to be increased. The hydrodesulfurization activity is enhanced as compared to NiW/Al2O3 catalyst. The synergistic enhancement of the activity of the NiMo3W9/Al2O3 catalyst relative to the bimetallic analogs is probably caused by formation of new mixed promoted active sites for direct desulfurization.  相似文献   

11.
It is shown that palladium–cobalt oxide–cerium catalyst deposited on cordierite catalyzes the reduction of nitrogen(II) oxide with carbon monoxide, and cobalt–iron catalysts in simultaneous reduction of NO + N2O with C3-C4 alkanes retained high activity in the presence of water vapor and sulfur dioxide. The Pd-Co3O4/cordierite catalyst exceeds the Pt-Co3O4/codierite catalyst in the conversion of NO and CO in the reaction mixture CO + NO + O2 + H2O + SO2. Modification of the Pd-Co3O4/cordierite with cerium oxide considerably increases its sulfur resistance.  相似文献   

12.
The kinetics of selective CO oxidation (or individual CO or H2 oxidation) over ruthenium catalysts are considerably as affected by the heat released by the reaction and specifics of the interaction of ruthenium with feed oxygen. In a reactor with reduced heat removal (a quartz reactor) under loads of ∼701 gCat−1 h−1 and reagent percentages of ∼1 vol % CO, ∼1 vol % O2, ∼60 vol % H2, and N2 to the balance, the reaction can be carried out in the catalyst surface ignition regime. When catalyst temperatures are below ∼200°C, feed oxygen deactivates metallic ruthenium, the degree of deactivation being a function of temperature and treatment time. Accordingly, depending on the parameters of the experiment and the properties of the ruthenium catalyst, various scenarios of the behavior of the catalyst in selective CO oxidation are realized, including both steady and transition states: in a non-isothermal regime, a slow deactivation of the catalyst accompanied by a travel of the reaction zone through the catalyst bed along the reagent flow; activation of the catalyst; or the oscillation regime. The results of this study demonstrate that, for a strongly exothermic reaction (selective CO oxidation, or CO, or H2 oxidation) occurring inside the catalyst bed, the specifics of the entrance of the reaction into the surface ignition regime and the effects of feed components on the catalyst activity should be taken into account.  相似文献   

13.
The comparative study of the role of binary oxide support on catalyst physico-chemical properties and performance in methanol synthesis were undertaken and the spinel like type structures (ZnAl2O4, FeAlO3, CrAl3O6) were prepared and used as the supports for 5% metal (Cu, Ag, Au, Ru) dispersed catalysts. The monometallic 5% Cu/support and bimetallic 1% Au (or 1% Ru)-5% Cu/support (Al2O3, ZnAl2O4, FeAlO3, CrAl3O6) catalysts were investigated by BET, XRD and TPR methods. Activity tests in methanol synthesis of CO and CO2 mixture hydrogenation were carried out. The order of Cu/support catalysts activity in methanol synthesis: CrAl3O{ia6} > FeAlO3 > ZnAl2O4 is conditioned by their reducibility in hydrogen at low temperature. Gold appeared more efficient than ruthenium in promotion of Cu/support catalysts. Published in Russian in Kinetika i Kataliz, 2009, Vol. 50, No. 2, pp. 242–248. The article is published in the original.  相似文献   

14.
A series of precipitants and commercial surfactants (soft templates) were employed to synthesize mesoporous/nano CeO2 by a hydrothermal method. As-prepared CeO2 was impregnated with palladium and employed for low-temperature catalytic oxidation of CO. It was found that both soft templates and precipitants had significant effects on the morphology, particle size, crystallinity, and porous structure of the CeO2, having a significant effect on the surface palladium abundance, molar ratios of surface species, and catalytic activity of the final impregnated Pd/CeO2. Using ammonia as precipitant could facilitate increased surface palladium abundance and surface molar ratios of PdO/Pd SMSI , Ce3+/(Ce3+ + Ce4+), and Osurface/Olattice. The catalytic activity of the final Pd/CeO2 catalysts could be enhanced as well. The optimal P123-assisted ammonia-precipitated Pd/CeO2 catalyst exhibited over 99% catalytic conversion of CO at 50 °C.  相似文献   

15.
The samples of the NiO/B2O3-Al2O3 system with NiO contents from 0.48 to 38.30 wt % were synthesized by the impregnation of borate-containing alumina (20 wt % B2O3). It was found that nickel oxide occurred in an X-ray amorphous state in the samples containing to 23.20 wt % NiO. At a NiO content of 4.86 wt % or higher, the support was blocked by the modifier to cause a decrease in the specific surface area from 234 to 176 m2/g and in the amount of acid sites from 409–424 to 333 μmol/g. An extremal character of the dependence of catalyst activity in ethylene oligomerization on NiO content was found with a maximum in the range of 4.86–9.31 wt %. Based on spectroscopic data, it was found that ethylene activation on the NiO/B2O3-Al2O3 catalyst can be associated with the presence of Ni2+ cations, which chemically interact with the support. The catalyst containing 4.86 wt % NiO at 200°C, a pressure of 4 MPa, and an ethylene supply rate of 1.1 h−1 provided almost complete ethylene conversion at the yield of liquid oligomerization products to 90.0 wt %; the total concentration of C8+ alkenes in these products was 89.0 wt %.  相似文献   

16.
The Pt0.5Со0.5/SiO2 catalyst has been prepared by the decomposition of a [Pt(NH3)4][Co(C2O4)2(H2O)2]. 2H2O binary complex salt supported in the pores of SiO2 pellets. It has been shown by a complex of physical and chemical methods that Pt0.5Со0.5/SiO2 contains alloy nanoparticles with an average composition Pt0.5Co0.5. The catalytic properties of Pt0.5Со0.5/SiO2 are studied in the preferential oxidation of СО in the reaction mixtures with various compositions. It was found that Pt0.5Со0.5/SiO2 has a high selectivity and makes it possible to decrease the outlet concentration of CO to a level of <10 ppm, and the presence of СО2 and/or Н2О in the reaction mixture almost does not affect its catalytic properties. The structure of the catalyst is stable under the conditions of preferential CO oxidation.  相似文献   

17.
The gas-phase monooxidation of ethylene by hydrogen peroxide on a biomimetic heterogeneous catalyst (per-FTPhPFe3+OH/Al2O3) was studied under comparatively mild conditions. The biomimetic oxidation of ethylene with hydrogen peroxide was shown to be coherently synchronized with the decomposition of H2O2. Depending on reaction medium conditions, one of two desired products was formed, either ethanol or acetaldehyde. The kinetics and probable mechanism of ethylene transformation were studied.  相似文献   

18.
A study was carried out on the properties of Ni/Al2O3 and Cu-ZnO/Al2O3 composites supported on ceramic honeycomb monoliths made from synthetic cordierite in the carbon dioxide conversion of methane and the partial oxidation of methanol. The structured nickel-alumina catalysts are significantly more efficient than the conventional granulated catalysts. The improved working stability of these catalysts was achieved by adjusting the acid-base properties of the surface by introducing sodium and potassium oxides, which leads to inhibition of surface carbonization. The hydrogen yield was close to 90% in the partial oxidation of methanol with a stoichiometric reagent ratio in the presence of the Cu-ZnO/Al2O3/cordierite catalyst. A synergistic effect was found, reducing the selectivity of CO formation in the presence of the Cu-ZnO catalyst relative to samples derived from the individual components Cu and ZnO. __________ Translated from Teoreticheskaya i éksperimental’naya Khimiya, Vol. 43, No. 5, pp. 299–306, September–October, 2007.  相似文献   

19.
This work is focused on the role of gold and Al3CrO6 support for physicochemical properties, and catalytic activity of supported nickel catalysts in partial oxidation of methane (POM). Catalysts, containing 5% Ni and 5% Ni-2% Au active phases dispersed on mono- (Al2O3, Cr2O3) and bi-oxide Al3CrO6 support, were investigated by TPR, BET and XRD methods, and the activity tests in POM reaction were carried out. Bimetallic Ni-Au catalysts dispersed on Al3CrO6 support remained highly stable and active. The amorphous binary oxide Al3CrO6 can stabilize considerable amount of Cr4+, Cr5+, and Cr6+ species in Ni-Au/Al3CrO6 catalyst network during its calcination in the air. Nickel supported on binary oxide Ni/Al3CrO6 can form Ni(III)CrO3 bi-oxide phase in reductive conditions. During TPR H2 reduction of Ni-Au/Al3CrO6 catalyst chromium(II) oxide Cr(II)O phase is observed. After POM reaction the existence of bimetallic Au-Ni alloy was experimentally confirmed on mono-oxide Al2O3 support surface, but its formation was not identified on bioxide Al3CrO6 support. Published in Russian in Kinetika i Kataliz, 2009, Vol. 50, No. 1, pp. 149–156. The article is published in the original. Based on a report at the VII Russ. Conf. on Mechanisms of Catalytic Reactions (with international participation), St. Petersburg, July 2–8, 2006.  相似文献   

20.
The CuO-CeO2/Al2O3 catalysts for the selective oxidation of CO in hydrogen-containing mixtures were prepared by surface self-propagating thermal synthesis (SSTS) with the use of cerium nitrate Ce(NO3)3, the ammonia complex of copper acetate [Cu(NH3)4](CH3COO)2, and citric acid C6H8O7 as a fuel additive. The effect of the C6H8O7/Ce(NO3)3 molar ratio on the catalyst activity and selectivity for oxygen was studied. The catalyst samples were studied by X-ray diffraction (XRD) analysis, temperature-programmed reduction (TPR-H2), IR spectroscopy of adsorbed CO, and transmission electron microscopy (TEM). It was found that an increase in the C6H8O7/Ce(NO3)3 ratio resulted in an increase in the degree of dispersion of the resulting CeO2 phase. The greatest amount of dispersed CuO particles, which are responsible for catalytic activity in the oxidation of CO, was formed at C6H8O7/Ce(NO3)3 = 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号